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Abstract
This thesis reports on the design, construction, and evaluation of a prototype two degrees-
of-freedom (DoF) haptic interface, which takes advantage of Magneto-Rheological Fluid
(MRF) based clutches for actuation. Haptic information provides important cues in teleop-
erated systems and enables the user to feel the interaction with a remote or virtual environ-
ment during teleoperation. The two main objectives in designing a haptic interface are sta-
bility and transparency. Indeed, deficiencies in these factors in haptics-enabled telerobotic
systems has the introduction of haptics in medical environments where safety and reliabil-
ity are prime considerations. An actuator with poor dynamics, high inertia, large size, and
heavy weight can significantly undermine the stability and transparency of a teleoperated
system. In this work, the potential benefits of MRF-based actuators to the field of haptics in
medical applications are studied. Devices developed with such fluids are known to possess
superior mechanical characteristics over conventional servo systems. These characteristics
significantly contribute to improved stability and transparency of haptic devices. This idea
is evaluated and verified through both theoretical and experimental points of view. The
design of a small-scale MRF-based clutch, suitable for a multi-DoF haptic interface, is dis-
cussed and its performance is compared with conventional servo systems. This design is
developed into four prototype clutches. In addition, a closed-loop torque control strategy
is presented. The feedback signal used in this control scheme comes from the magnetic
field acquired from embedded Hall sensors in the clutch. The controller uses this feedback
signal to compensate for the nonlinear behavior using an estimated model, based on Arti-
ficial Neural Networks. Such a control strategy eliminates the need for torque sensors for
providing feedback signals. The performance of the developed design and the effective-
ness of the proposed modeling and control techniques are experimentally validated. Next,
a 2-DoF haptic interface based on a distributed antagonistic configuration of MRF-based
clutches is constructed for a class of medical applications. This device is incorporated in a
master-slave teleoperation setup that is used for applications involving needle insertion and
soft-tissue palpation. Phantom and in vitro animal tissue were used to assess the perfor-
mance of the haptic interface. The results show a great potential of MRF-based actuators
for integration in haptic devices for medical interventions that require reliable, safe, accu-
rate, highly transparent, and stable force reflection.

KEYWORDS: Haptics, Haptic Interface, Magneto-Rheological Fluids and Actuators, Me-
chanical Design, Prototyping, Modeling and Control, Needle Insertion, Soft-Tissue Palpa-
tion, Artificial Neural Networks, Simulation and Analysis, Virtual Wall
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1

Chapter 1

Introduction

This chapter describes the research problem, namely the issue of stability and transparency

in haptic devices for medical applications. In addition, an introduction to the proposed

solution is given and denotes a paradigm shift in designing the actuation mechanism of

haptic devices through the use of Magneto-Rheological Fluid (MRF) based clutches. The

state of the art in this field is also reviewed in this chapter.

1.1 Haptics and the Issues of Stability and Transparency

Haptics studies the use of force and tactile feedback to simulate interaction with remote

or virtual objects. Such feedback allows the user to perform appropriate force control

actions, through the haptic interface, for safe and proper manipulation. In this regard, haptic

sensation should be convincing enough to provide the user with a plausible feeling of being

directly in contact with the remote or virtual environment. Such a desirable attribute is

called transparency. The stability of the haptic system is another crucial issue in designing

such systems. However, it is known that transparency and stability are conflicting design

criteria [1][2].
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1.2 Haptics in Medicine: Safety Concerns
Since its inception, haptics has attracted a great amount of interest from different sectors of

the robotics industry. The force and tactile feedback provided by haptic devices can enable

the user to adjust force control actions to ensure accuracy and safety of operations. This sig-

nificantly improved the quality of telerobotic tasks. In recent years, with the rapid growth

in applications of minimally invasive medical interventions, the integration of haptics into

such applications has been identified as a high-priority objective in major medical robotics

roadmaps [3][4]. Motivated by in-depth research, it is not difficult to imagine the benefits

of providing a clinician using robotics-based systems with the feeling of being directly in

contact with tissues and organs. Such sensation can improve the intuitiveness of minimally

invasive interventions. In addition, it enables the clinicians to control the quality of tasks

during procedures (e.g., proper suture knot tying, achieving adequate contact during cardiac

ablation) and to avoid causing any damage to tissue by exerting too much force [5]. How-

ever, the introduction of haptics in minimally invasive applications brings to light a number

of safety concerns particularly among standardization bodies, robotic manufacturers, and

researchers [6][7]. This is to be expected since the fundamental premise behind existing

safety norms is a high level of reliability and safety of medical devices. However, the is-

sue of stability of haptics-enabled telerobotic systems hampered the introduction of haptics

into medical environments [4]. Due to the susceptibility of bilateral teleoperation systems

to time delays, there is a possibility that such systems can become unstable as a result of

the reflected slave force and induced master motion mechanism [8]. Thus, much research

has focused on developing reliable control techniques for haptic applications. To this end,

the use of passivity-based and small-gain approaches have been reported in [9][10]. How-

ever, the conservative nature of such methods results in degraded quality of force reflection.

This calls for a long and costly amount of training for the medical staff to enable them to

efficiently use the designed devices.
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1.3 Effect of Actuators on Stability and Transparency
Another body of work has focused on addressing this issue through redesigning the actu-

ation mechanisms in haptic interfaces. The actuators and mechanisms used in designing

a haptic interface play an important role on the quality of force feedback, as well as the

stability of the system. This makes the design of a haptic interface twofold challenging.

In order to have transparency, it is of utmost importance that while a haptic device is ca-

pable of recreating the forces that occur during contact with stiff objects, it exhibits low

friction, damping, and inertia to sustain transparency during motion in free space. Poor

dynamics and control of manipulation can affect the sense of touch, in particular when

rigid instruments or actuators are used [11]. Heavy and/or cumbersome haptic systems

generate artifacts which negatively affect the quality of the virtual presence [12]. The use

of electrical motors in haptic devices, especially for medical applications, has proved to be

challenging for several reasons. The poor dynamics of electrical motors, imposed by the

need for gear reduction, can significantly reduce the transparency of the system by increas-

ing the damping, inertia, and friction of the haptic device [13]. This is highly problematic

in medical applications that require high-fidelity and accurate force reflection. Moreover,

their active nature (which may be exhibited in the form of oscillations and jerks) can re-

sult in degradation of stability, which is unacceptable in medical applications [8][14]. In

addition, such actuators can exhibit oscillations and jerks [14], which can not only cause

uncomfortable forces for the user, but are highly problematic in delicate operations [15].

While control-based methods [9][10] can alleviate these problems to a great extent, they

significantly degrade the quality of haptic telepresence. As a result of the aforementioned

safety concerns and their inadequate efficiency in terms of transparency, the application

of haptics in medicine is almost nonexistent and is highly limited to research. This work

looked into the use of a semi-active actuation mechanism to mitigate the safety and stability

concerns, with the hope of easing (to a small extent) the entry of haptics into medicine.
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1.4 Paradigm Shift in Actuation

Actuators based on Magneto-Rheological Fluids (MRFs) have been proposed as an alterna-

tive for use in haptic devices [11]. MRFs exhibit a very unique characteristic: the viscosity

and shear stress of these fluids can be intelligently controlled using an applied magnetic

field. Several passive and semi-active actuators have been developed by taking advantage

of this feature. Such systems exhibit remarkable characteristics, including high yield stress,

low mass-torque and inertia-torque ratios, compact size, intrinsic passivity, and precision

controllability [16, 17]. It is expected that the superior characteristics of MRF-based actu-

ators in comparison with active actuators will enable the design of a more transparent and

stable haptic interface.

An investigation of this idea is carried out in this work. To this end, several theoretical

and experimental studies have been performed to study the effect of MRF-based actuators

on the performance of a haptic interface. The end result of this work is a prototype two-

DoF MRF-based haptic interface developed for medical applications. The performance of

this system is validated through rigorous tests conducted in needle insertion and soft-tissue

palpation applications from medical robotics. While further investigations are required,

the promising results show the great potential of MRF-based actuators to be used in haptic

devices for medical applications that require accurate, stable, reliable, high fidelity, and

transparent force feedback.

1.5 Overview of the Dissertation

An overview of the presentation and contribution of each chapter of this thesis is as follows;



www.manaraa.com

1.5. OVERVIEW OF THE DISSERTATION 5

Chapter 1: Introduction

The research problem is described and the proposed solution is discussed. The fundamen-

tals of smart-fluids based actuators are briefly introduced. A review of the state-of-the-art

(application of smart fluid-based actuators in haptics) concludes this chapter.

Chapter 2: Study of Transparency and Stability

The physical characteristics of the MRF-based actuators, which contribute to transparency

of the system are reviewed. The results of applying the small-gain theorem and virtual

wall benchmark are employed to describe the effect of MRF-based actuators on stability

of a teleoperation system. Next, a large-scale 1-DoF MRF-based haptic interface is used

to study the stability of the system in comparison to a haptic device based on electrical

motors.

Chapter 3: Design of a Small-Scale MRF-based Clutch

A novel design for a small-scale actuator, called an armature-based design, is proposed,

which exhibits superior mechanical characteristics and is suitable for use in a medium-size

haptic interface. Simulation and analysis of the mechanical characteristics of the designed

clutch are performed and its output torque, mass, and reflected inertia are derived. These

properties are then compared with those of conventional small-scale electrical motors and

conventional MRF-based clutch designs.

Chapter 4: Development and Evaluation of the Small-Scale MRF-based Clutch

The development and construction of four MRF-based clutches based on the proposed de-

sign are reported. The properties of the developed system are compared with those of

conventional electrical motors and existing MRF-based actuators used for haptic applica-

tions. A modeling method based on artificial neural networks is provided to predict the

nonlinear behavior of the clutch. In addition, a sensor-less control scheme is proposed for

efficient control of the output torque of the clutch. Several experiments are performed to
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validate the performance of the clutch, and the modeling and control technique.

Chapter 5: Development and Evaluation of the Haptic Interface

A prototype haptic device is developed based on a distributive antagonistic configuration.

The performance and specifications of this system are compared with those of a PHAN-

TOM Omni, a PHANTOM Desktop, and a Quanser Haptic Wand. Several experiments are

performed to assess the improvement of stability using the developed system in comparison

with the PHANTOM Omni and the Quanser Haptic Wand. To this end, needle insertion

and tissue palpation on phantom and in vitro animal tissues are considered. Furthermore,

the accuracy of the system in providing transparent force feedback to the user is studied

through the same medical applications.

Chapter 6: Conclusion and Future Work

An overview of the cost of developing the haptic interface and future approaches to reduce

this cost are given. The disadvantages and drawbacks of the proposed system are reviewed

and potential solutions are outlined. Possible future steps of the project conclude the thesis.

REMARK 1. Electro-Rheological Fluids (ERF) are another type of smart fluids, which

have several similarities to MRF. In this chapter and in a portion of Chapter 2, ERF-based

systems are also considered for the sake of comparison. However, as explained in the next

chapter, this research is only focused on MRF-based actuators because of their superior

characteristics and potential for use in a medical haptic device.

1.6 Fundamentals of Smart Fluids Based Actuators

MRF is a suspension of micrometer-sized ferrous particles in an oil-like carrier fluid. ERF

consists of extremely fine non-conducting particles suspended in an electrically insulating
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fluid. When these fluids are subjected to an externally applied field (magnetic field for

MRF, and electric field for ERF) the particles aggregate into columns aligning themselves

in the direction of the applied field (Fig. 1.1). Consequently, the columns act to resist

shearing or flow of the fluid. The apparent yield stress of the fluid is dependent on, and

increases, with the intensity of the applied field. [18]. In the absence of a field, these fluids

act as Newtonian fluids, whose viscosity changes proportionally to the shear rate.

MRF consists of three main components: magnetizable particles (20% to 45% of total

volume), a carrier fluid, and additives [19]. The variety in selection and combination of

these components defines all the characteristics of the fluid, e.g., viscosity, shear stress,

operating temperature range, etc. ERF consists of suspended particles in a liquid whose

dielectric constant or conductivity is mismatched to create dipolar particle interactions in

the presence of an electric field [20].

(a) (b)

Figure 1.1: (a) Microscopic view of particles, and (b) schematic view of operation of the

MRF and ERF [12]



www.manaraa.com

1.6. FUNDAMENTALS OF SMART FLUIDS BASED ACTUATORS 8

1.6.1 Discovery and Current Applications

Since the discovery of ERF in 1949 by W.M. Winslow, a large number of studies have been

performed on this fluid, mainly motivated by potential automotive applications [19]. De-

spite these major efforts, ERF-based devices failed to reach the commercialization stage,

due to their numerous limitations. Vibration control remains as their main application area

where such devices provide industrially-suitable damping force ranges. Their current ap-

plications are limited to prototypes of engine mounts, vehicle shock absorbers, and shock

struts [21]. The need for ERF-based systems to have high voltage power supplies, ex-

pensive wires and connectors, their temperature dependence, and their high sensitivity to

impurities hampered their commercialization [22].

J. Rabinow discovered MRF shortly after the discover of ERF. However, there were no

substantial studies on this type of fluids until the 1990s when it was realized that they are

capable of producing ten to twenty times greater shear stress in comparison to ERF, which

led to devices with much smaller volumes and weight for comparable performance. In ad-

dition, their simple and inexpensive electronics, much lower temperature dependency, and

insensitivity to impurities enabled real-time applications of MRF-based devices [22]. In

comparison to ERF-based devices, researchers have been more successful in developments

and commercialization of MRF-based devices, especially in the automotive industry. More

details will be given in Chapter 2.

1.6.2 Actuators and Operational Modes

Using MRFs or ERFs, an actuation system can be constructed such that the amount of

transmitted torque/force can be controlled by the intensity of an applied field. MRFs and

ERFs exhibit such behavior in three operational modes, namely shear, flow, and squeeze
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modes [23] (Fig. 1.2). In shear and squeeze modes, the fluid resists the motion of plates

perpendicular to and along the applied field, respectively, while in flow mode, the flow

of the fluid itself is resisted due to the formed particle columns [23, 24]. In shear mode,

the force required to cause the fluid to shear depends on the intensity of the applied field.

In squeeze mode, for a given force, the displacement of the moving pole is controlled by

the intensity of the field. Displacement amplitudes are very small but resistive forces are

very high. Brakes and clutches have been developed based on the shear mode of MRFS

and ERFS. Dampers and shock absorbers take advantage of the flow mode [25], while

several compliance-mimicking tactile displays with limited torque/force capacity have been

developed using the squeeze mode [26].

Actuators based on such fluids have several advantages over conventional actuators includ-

ing fast time response, high torque density, low power consumption, and intrinsic passiv-

ity [27]. The insensitivity to contamination, durability, and long service life of MRF further

empower their commercial utilization. The characteristics of smart fluids based actuators

depend on the mode in which the actuator operates, and differ from one type to another.

Our focus in this study is only on shear mode in the form of clutches and their application

in haptic interfaces. Clutches can be employed in the actuation mechanism of robot ma-

nipulators to control the delivery of output torque at the joints. Fig. 1.3 depicts a possible

Pressure

Motion

Force

Motion

MotionForce

Figure 1.2: Operation modes of MRF, (a) flow mode, (b) direct shear mode, and (c)squeeze

mode.
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Figure 1.3: A possible arrangement for robot joint actuation using an MRF-based clutch,

through which the delivery of output torque at the joints is controlled

arrangement for actuating a robot joint. The active drive (i.e., motor) provides power to

the joint via a clutch that controls the output torque. The justification for such a choice is

discussed in Chapter 2.

1.7 State of the Art: Application in Haptic Devices

Several haptic devices have been developed based on MRF- and ERF-based actuators.

These devices can be roughly categorized into four types, namely,

1. Force Displays: knobs, joysticks, and parallel-link displays [14, 28, 29]

2. Tactile Displays: pinch grasps, haptic black boxes, etc. [11, 12, 30, 31]

3. Hand Masters: ground-mounted mouse, haptic gloves [32–34]

4. Rehabilitation Devices and Exoskeletons [35–37]
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1.7.1 Knobs, Joysticks, and Force Displays

These are the simplest types of haptic devices. Several studies have taken advantage of

MRF- or ERF-based brakes, dampers, and even clutches in developing single- and multi-

DoF force displays. These systems are applicable to a wide range of applications, from

virtual reality to space exploration and from vehicular instrument control to minimally

invasive surgery.

Knobs

The application of MRF and ERF-based knobs in virtual reality and vehicular instrument

control has been reported in the literature. In [38], a disk-type MRF-based brake was used

as a control knob to perform a simple 1-DoF task in virtual reality. In this device, by

controlling the stiffness of the brake, a simulated feel for events happening on the display

was provided to the user. This control knob consisted of a shaft with a flat circular plate

in the middle enclosed in a magnetic soft iron core containing MRF. On the lower part of

the actuator a rotor-type potentiometer is attached to measure the displacement of the knob.

The knob is capable of providing resistive (passive) torque ranges from 0.01 to 0.17 Nm.

In another study, a 1-DoF joystick was developed [39, 40] in the same fashion. This system

is capable of generating a maximum of 0.8 Nm resistive torque.

An MRF-based damper was developed by Ahmadkhanlou et al. in [28, 41]. This damper

was used in a steer-by-wire vehicle to provide haptic feedback to the driver. A system that

controls automotive steering by means of computer-controlled electronic signals instead

of a direct mechanical linkage through the steering column is called steer-by-wire system.

The main problem with these systems lies in the fact that without the steering columns,

there is no mechanism for tactile feedback for the driver. Hence, the driver suffers from
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the lack of meaningful information about what is happening on the road. In this study, an

MRF-based damper was developed, which can apply 15 Nm of torque and was coupled to

the steering wheel. By applying a current to the damper, it is possible to generate resistance

torque when the driver rotates the steering wheel.

In another work [42], Vitrani et al. developed a disk-type ERF-based brake with applica-

tion in vehicular instrument control. It was shown in this paper that an ERF-based brake

used in conjunction with a nonlinear PI controller (with feed-forward) exhibits a precise

and accurate response, compatible with use in a haptic application. The maximum appli-

cable torque with this device is about 0.05 Nm. Another 1-DoF ERF-based joystick was

developed by Bose et al. in [43] which is capable of generating torques of up to 1.2 Nm (at

field strength of 3 Kv/mm).

Joysticks

A 2-DoF ERF-based joystick was developed in [44] (Fig. 1.4(a)). This device takes ad-

vantage of 2 ERF-based disk-type brakes. The actuators were mounted at right angles to

each other. In the center was a two-degree of freedom joint on which the joystick handle is

mounted. The shafts from the actuators extend towards the joint where they are attached.

The joint itself was mounted with four bearings, to reduce any bending moment on the

shafts. A low-profile rotary encoder is attached to each shaft to measure angular displace-

ment. This device was capable of generating passive torques in range of 0.15-1.35 Nm.

In another work, The same brakes as in [39] were used in a 2-DoF MRF-based joystick for

virtual reality applications [40]. This joystick was constructed of two disc-shaped MRF-

based brakes positioned perpendicularly with a gimbal structure, which transfers the move-

ment of the joystick handle into two actuator rotary motions (Fig. 1.4(b)). The handle can
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(a) (b)

Figure 1.4: (a) An ERF-based joystick [44], and (b) an MRF-based joystick using MRF-

based brakes and a gimbal structure [40]

rotate for 120 degrees in each direction. The joystick provides wide resistive torque in

range of 0.5-10 Nm. The device was used in 2D and pseudo-3D virtual experiments and

was proven successful. The novel characteristics of this system makes the force control

come true, which enlarges the application of such joystick in the field of virtual surgery.

Force Displays

Force display systems are large-scale robotic systems that display sensed forces to the users

in industrial settings. In conventional force displays, strong active actuators have been

used. These types of actuators could be dangerous, because they are capable of creating

large forces, which may harm human users. Hence, the interest in passive and dissipative

actuators (e.g., MRF- and ERF-based) for such purposes is increasing rapidly.

Furusho et al. [45] developed a low inertia cylindrical type ERF-based actuator and used

these actuators within a 2-DoF force display. The force display is capable of generating

about 0.7 Nm passive torque at a field strength of 3 kV/mm.
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In another work [46], the same authors developed a stronger ERF-based brake which can

apply 2 Nm of passive torque at field strength of 3 kV/mm. They then used two such

brakes and developed a 2-DoF force display by taking advantage of a belt-pulley mecha-

nism connected to a parallel-link manipulator (Fig. 1.5(a)). Each ERF-based manipulator

independent controls the motion of a link. Experimental results for contact with a virtual

wall, and tracing over a virtual wall demonstrated the effectiveness and stability of this

display system in providing passive force feedback.

Reed et al. [15], proposed a 2-DoF dissipative force display. This device was in the form

of a parallel five-bar linkage actuated by commercial MRF-based brakes. Two configu-

rations were proposed, namely, three-brake and four-break configurations. Although the

results improved in both cases, the former configuration results in improved intuitiveness,

while the latter improves the workspace of the display. Models of both configurations of

the device were obtained. The force display was tested by using a virtual environment. Pri-

mary results were promising and proposed several potential benefits for the area of obstacle

avoidance.

Yamaguchi et al. [47] developed a semi-active high-performance 2-DoF MRF-based force

display (Fig. 1.5(b)). In this design, 2 DC motors and four MRF-based clutches were used.

The output torque of the system is transferred throughout a belt-pulley mechanism to the

parallel links. This design resulted in a low inertia, high torque/inertia ratio, and high

responsibility. The maximum generated torque is about 10 Nm.

1.7.2 Tactile Displays

A tactile display is a programmable device, which can artificially stimulate the skin to

generate sensation of touch in the form of shape, vibration, pressure, pressure distribution,
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(a) (b)

Figure 1.5: (a) A passive force display using 2 ERF brakes [46], (b) a semi-active force

display using two DC motors and four MRF-based clutches.

and compliance [48].

Historically, one of the first tactile devices made using ERF was an I/O tablet for a blind

user [49] which was developed by Fricke et al. This tablet consisted of an array of ERF el-

ements, which can be activated selectively to create Braille alphabets. The main advantage

of such a tablet in comparison to its conventional counterparts was that there is no moving

mechanical part and the final price was almost half of the competition.

More recently, in another work, two MRF [50, 51] and ERF [52] based tactile displays

using a 5 × 5 array of coils and electric cells, respectively, were developed. When a field

is applied to an element of these systems, a small bump can be easily felt by dragging a

finger over the display surface. Surface force responses of these displays under various

magnetic/electric fields were measured while a sensorized probe was moved across the
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upper surface. The results showed that exact image information of the object could be

displayed using these tactile displays. In addition, it was shown that the displayed surfaces

are stable and repeatable.

Bicchi et al. developed several instruments capable of suitably energizing MRF with a

magnetic field to build shapes that can be directly felt and explored by hand. These devices

include, (i) Pinch Grasp (PG) [26], (ii) Haptic Black Box (HBB-I) [11], (iii) HBB-IMP [12],

and (iv) HBB-II [30] (Fig. 1.6).

The PG was built to verify the ability of using MRF to mimic the compliance, damping, and

creep of some materials (e.g., body tissues), and reproducing virtual object softness. In this

device a flexible balloon filled with MRF was placed in the air gap of a magnetic circuit.

The compliance of the balloon was intelligently controllable by varying the intensity of the

magnetic field. Experimental results demonstrated good agreement between compliance of

liver, spleen, and brain with that of an MRF-filled balloon. However, unacceptable results

were obtained for bone, muscle and lung. This is due to the fact that the magnetic field

intensity required to induce a compliance similar to these biological tissues is beyond the

saturation limit of the MRF used [26]. Nevertheless, this system proposed a beneficial

tactile device that can be mounted on the handle of minimally-invasive surgical tools, to

give the surgeon a sense of the touched tissues.

The next three devices built by Bicchi et al. are called Haptic Black Boxes. These MRF

based haptic devices were built based on a freehand concept, in which users can put their

hand (covered with a latex glove) within an MRF-filled box and freely interact with suit-

ably controlled fluids. The first prototype was called HBB-I [11]. This device consisted of

a rectangular plastic box containing MRF and a series of magnetic coils placed under the

box. Applying a proper magnetic field (by tuning the current of the coils) allowed to ma-

terialize 2-D objects with a given shape and compliance in the fluid. Due to the placement
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(a) (b) (c) (d)

Figure 1.6: Haptic Black Boxes (a) Pinch Grasp, (b) HBB-I, (c) HBB-IMP, and (d) HBB-II

of the coils, the generated magnetic circuit included a large air gap, which resulted in re-

duction of the magnetic intensity, which was the main drawback of this device. In the next

generation of haptic black boxes, HBB-IMP was developed [12]. This system included two

magnetic systems composed of a series of ferromagnetic pistons symmetrically positioned

with respect to the center of the plastic box. Each piston pair was able to move back and

forth to dynamically address the magnetic flux in different regions of the MRF. In this way

a quasi-3D object can be mimicked inside the MRF box. In order to increase the resolution

of the haptic box, HBB-II was developed [30]. It has a cylindrically shaped plastic box

containing MRF, and a series of ferromagnetic cores are positioned around and underneath

the box. Twenty two pistons are arranged in a circular matrix around the box, while, the

other fifty are placed around the lateral surface of the box. The modulus of the magnetic

field in a specified portion of the MRF and its spatial resolution can be controlled in this

way. Hence, it was possible to reconstruct many objects of different shapes in different

zones within the box containing the fluid.

1.7.3 Hand Masters

Three important properties are identified for haptic gloves so as to immerse the human in

virtual reality manipulations [53]. These are that: (i) free space must feel free, (ii) a solid
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virtual object must feel stiff, and (iii) physical constraints must not be easily saturated.

Also, to truly immerse the user in the virtual (remote) environment, she/he must forget

the real world. This is a major challenge, which is very demanding when considering the

number of actuators needed. Also, the user must not have any constraints to the natural

movement of his/her hand [54] [55].

Hence, the requirements for actuators in a haptic glove are many. The actuators must have

very low friction when they are in the off-state, a high enough force in the on-state to

convince a person when she/he is touching a solid object, as well as a low weight. Finally,

the actuators used must be safe especially since their application is in proximity to human

skin. A number of technologies have been applied to power previous hand master projects.

The most common are electric actuators and pneumatic actuators. Due to the active nature

of such actuation, these gloves can cause discomfort or even injury in case of oscillation

and instability [32]. In order to overcome these problems, several studies have considered

the use of MRF- and ERF-based actuators in the development of feedback gloves. The

small weight and size, low inertia, high passive torque capacity, and intrinsic passivity of

these types of actuators make them suitable for use in safe and highly transparent (in terms

of force reflection accuracy) haptic gloves which are light and compact.

Bar-Cohen et al. [56, 57] conceived a haptic glove called MEMICA (MEchanical MIrror-

ing using Controlled stiffness and Actuators) that has high dexterity, rapid response, and

large workspace. The MEMICA gloves were designed to provide intuitive mirroring of the

conditions at a virtual site where a robot simulates the presence of a human operator. The

key components of this device are electrically controlled force and stiffness actuators that

work based on ERF brakes. This is a semi-active configuration which can provide both

active and resistive actuation [57]. The actuators are placed in the back of the hand, and

due to their small size they do not cause any obstruction in the grasping motion. Further
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results on the performance of the device were not found.

In another study [58, 59], Winter et al. took advantage of MRF-based dampers and de-

veloped MRAGES (MRF-based actuated glove electronic system, Fig. 1.7(a)). Five MRF-

based dampers (weighing only 0.035 lb) which can exert passive force up to 6 N were

placed on the back of the hand. A novel exoskeleton mechanical power transmission sys-

tem was designed to transmit the resistive forces of the dampers to the user’s fingertips.

This system acted as a push/pull control cable. The whole system is very lightweight and

only weighs less than 0.45 lb. The main drawback of the actuator design is that the actuator

produces a large amount of force, even in the off-state. Those used in the final version of

the glove had static forces ranging from 1.4 N to 1.9 N (36% of the maximum applicable

force). Such a high static force creates hand fatigue and reduces the transparency of the

system.

Other authors have discussed the use of MRF-based dampers in haptic gloves. As an exam-

ple, Cassar et al. [54] proposed such a glove using 2 MRF-based dampers for two fingers.

The applied passive force can be as high as 25 N, while the off-state force is about 3.6 N.

The glove weights about 1 lb.

Blake et al. [34], developed a haptic glove by taking advantage of six MRF-based brakes.

The developed brakes are compact (25 mm diameter, 14 mm thickness, 0.18 lb weight) and

can apply up to 0.899 Nm of passive torque (Fig. 1.7(b)). The glove weighs about 1.4 lb.

The system applies passive forces only to 3 fingers. The main advantage of this glove is that

it only applies 0.005 Nm of torque (1.2% of the maximum torque) in the off-state. Hence

it has better transparency compared to MRAGES. However, it is heavier, bulkier, and less

dexterous.

Nam et al. [32] developed an MRF-based glove, called Smart Glove. It takes advantage
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(a) (b)

Figure 1.7: (a) MRAGES [59], (b) haptic glove with MRF-based brakes [34]

of 5 MRF-based dampers placed on the wrist of the human, each of which can apply up

to 26 N of passive force. Each actuator houses a Hall sensor to measure the position of

the piston. It weighs 0.114 lb and has a 20 mm stroke. A tendon-type flexible link was

designed to connect the fingertips to the MRF actuators. This resulted in effective force-

position transmission, as well as fewer actuators and a low-weight design of this glove

(about 0.6 lb). In this design the actuator friction was stated to be a major concern to

improve the transparency of the haptic interface. They also developed a 5-DoF ground-

based haptic hand master called Smart Mouse [33]. Five passive MRF-based dampers

were used in this device, which apply passive forces to the fingers of the user. The mouse-

like (ground-based) structure of this device results in elimination of unnecessary reaction

forces and reduction of muscular fatigue during operation.

1.7.4 Rehabilitation Devices and Exoskeletons

Force feedback is an essential part of rehabilitation. Fujisawa et al. [35] developed an

upper limb patient simulator by taking advantage of two MRF-Based brakes. A physical

therapist trainee can use this system to provide the experience, which can only be obtained
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through practice. This simulator is capable of reproducing the stiffness of spasticity that is

often seen in stroke patients. The symptoms of spasticity can be reproduced by controlling

the reaction force given by the physiotherapist passively through controlling the viscosity

of the MRF. The results were promising: however periodic vibration was observed which

could cause discomfort for the user.

In another work [60], a versatile rehabilitation device, in the form of an exoskeleton, was

developed that can be used to strengthen different muscle groups based on the torque gen-

erating capability of the muscle. The core of the device is an MRF-based damper, which

provides passive exercise force. The device is low cost, smaller than other commercially

available machines, and can be programmed to apply resistance that is unique to a particular

patient and will optimize strengthening.

Weinberg et al. [36] presented a novel, smart and portable Active Knee Rehabilitation Or-

thotic Device (AKROD), in the form of an exoskeleton, designed to train stroke patients

to correct knee hyperextension during stance and stiff-legged gait. The knee brace pro-

vides variable damping controlled in ways that helps motor recovery in stroke patients. A

resistive, variable damper, ERF-based component is used to facilitate knee flexion during

stance by providing resistance to knee buckling. Initial results from human testing demon-

strated that AKROD is able to accurately produce desired torque and velocity profiles while

ensuring an adequate level of comfort for patients.
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Chapter 2

Theoretical and Experimental
Evaluation of Transparency and
Stability

The two main objectives in designing a haptic interface are stability and transparency. The

dynamics of the actuators employed in a haptic interface have a significant effect on these

goals. In this chapter, the potential benefits of Smart Fluid based actuators, i.e., Magneto-

Rheological Fluid (MRF) and Electro-Rheological Fluid (ERF) based systems, to the field

of haptics are discussed from both theoretical and experimental points of view. Devices

developed with such fluids are known to possess superior mechanical characteristics over

conventional servo systems. This contributes significantly to improved stability and trans-

parency of haptic devices. Conclusions drawn from this investigation indicate that MRF

clutch actuation approaches can indeed be developed to design haptic interfaces with im-

proved stability and transparency.

This chapter contains material published in (1) ”Application of Magneto-Rheological Fluid Based
Clutches for Improved Performance in Haptic Interfaces”, presented at the IEEE Int Conf on Robotics and
Automation, Hong Kong, June 1-4, 2014. and (2) ”Suitability of Small-Scale Magneto-Rheological Fluid
Based Clutches in Haptic Interfaces for Improved Performance”, accepted for publication in the IEEE/ASME
Transactions on Mechatronics, August 2014.
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2.1 Introduction

The actuators and mechanisms used in designing a haptic interface play an important role

on the quality of force feedback, as well as the stability of the system. This fact makes the

design of a haptic interface twofold challenging. In order to have a transparent system, it

is of utmost importance that while a haptic device is capable of recreating the forces that

occur during contact with stiff objects, it exhibits low friction, damping, and inertia to sus-

tain transparency during motion in free space. Poor dynamics and control of manipulation

can affect the sense of touch, in particular when rigid instruments or actuators are used [1].

Heavy and/or cumbersome haptic systems generate artifacts which negatively affect the

quality of the virtual presence [2]. Furthermore, the use of active actuators (e.g., electri-

cal motors) in haptic devices may degrade the problem of stability [3] due to generation

of energy, the problem of reflected slave forces, and induced master motion mechanisms,

especially in systems with time delay [4]. In addition, such actuators can exhibit oscilla-

tions and jerks [5], which not only can cause uncomfortable forces for the user, but are

highly problematic in delicate operations [6]. Most current haptic systems take advantage

of passivity-based and small-gain approaches to guarantee the stability [7, 8]. However,

such approaches are considered to be conservative and in turn result in degraded trans-

parency. Hence, to effectively operate such systems, long and costly amount of training is

required.

Actuators based on MRF and ERF have been proposed as an alternative for use in haptic de-

vices [1]. These fluids exhibit a very unique characteristic: the viscosity and shear stress of

these fluids can be intelligently controlled using an applied magnetic field. Several passive

and semi-active actuators have been developed by taking advantage of this feature. Such

systems exhibit remarkable characteristics, including high yield stress, low mass-torque

and inertia-torque ratios, compact size, intrinsic passivity, and precision controllability [9].
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It is expected that the superior characteristics of MRF- and ERF-based actuators in com-

parison to active actuators will enable the design of a more transparent and stable haptic

interface. An investigation into this idea is presented in this chapter.

To this end, first, intrinsic properties of such actuators, which have an impact on trans-

parency, are discussed in Section 2.2. Next, their effect on the stability of a bilateral tele-

operation system is discussed from a theoretical point of view in Section 2.3. This chapter

takes advantage of the results of small-gain theorem and virtual wall benchmark, to study

the effect of smart fluid based actuators characteristics on the stability of a system.

Another important contribution of this chapter is that it shows the effect of MRF-based

actuators in improving stability and transparency of haptic interfaces from a practical point

of view, by taking advantage of a large-scale setup. Experimental evaluation on the per-

formance of a 1-DoF haptic interface which takes advantage of an MRF-based clutch is

presented in Section 2.4. The well-known virtual wall benchmark is used for this purpose

and the results are compared with another 1-DoF haptic device with a DC motor at its core.

Although the clutch used in Section 2.4 is bulky, it serves as a proof of concept. Conclu-

sions drawn from these results indicate that indeed the haptic interface with an MRF clutch

exhibit improved stability and transparency in comparison to its standard counterpart. The

results show the promising potential of these actuators for integration in a multi-DoF haptic

interface with improved stability and transparency.

This motivated us to move toward design of a small-scale MRF-based clutch suitable for

haptic interface, which is discussed in Chapter 3.
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2.2 Transparency of Smart Fluid Based Force Feedback

In this section, the advantages and disadvantages of MRF- and ERF-based actuators in

improvement of transparency in a haptic systems are studied from mechanical and phys-

ical points of view. Overall, such actuators can be used to design compact, light weight,

low inertia, low friction, high bandwidth, and high torque haptic devices which can con-

tribute to transparency of a haptic interface. Although the main focus of this research is on

MRF-based systems, in this section, the properties of ERF-based actuators are also briefly

reviewed to provide a comparison between the two types of smart fluids and the reasoning

behind selecting MRF-based actuators over ERF-based actuators for developing the haptic

interface in this thesis (Section 2.2.6).

2.2.1 Shear Stress

A haptic device should be capable of generating large forces/torques to mimic interaction

with stiff objects. MRF are capable of producing high shear stress. The produced shear

stress by MRF though is bounded and is limited to the physical properties of the fluid, e.g.,

its magnetic saturation [10]. Nevertheless, MRF can produce high yield stresses typically

in the range of 50 to 100 kPa, depending on their chemistry. Consequently, these fluids

can be used in designing actuators with high torque capacity, suitable for transparent haptic

interfaces. Alternatively, the value of shear stress for ERF does not typically exceed 10 kPa

which is limited by electrical breakdown at high electrical field strengths [11]. However,

it should be noted that more recent research into the field of ERF has produced materials

exhibiting higher yield stress [12]. Hence, these fluids can also be used to design actuators

capable of transmission or generation of high passive/semi-active force and torque.
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2.2.2 Actuator Inertia

While a haptic device should be able to generate high torques, it is highly desirable that it

exhibits low inertia. The use of gear reduction for increasing the torque capacity of electri-

cal motors results in a significant increase of reflected inertia. The reflected actuator inertia

can in fact be much larger than that of the link inertia due to the use of gear reduction [13].

On the other hand, in an MRF- or ERF-based actuator the reflected rotor inertia of the mo-

tor is replaced with the reflected inertia of the clutch output shaft [9]. It has been shown

that MRF-based clutches can demonstrate superior output inertia characteristics over the

low-inertia servo motors [10, 14].

2.2.3 Actuator Mass

Heavy and cumbersome haptic interfaces affect the quality of force feedback. It is highly

desirable that a haptic device has low mass-torque ratio. Light weight and compact size

of MRF- and ERF-based actuators allow the user to experience a more realistic interac-

tion [15]. Ferromagnetic materials (i.e., steel) must be used in MRF-based actuators in

order to create magnetic circuits. However, in ERF-based actuators much lighter materials

(i.e., aluminum) can be used which result in a relatively lighter weight of the system [10].

On the other hand, due to their large shear stress, MRF-based devices can be made sub-

stantially smaller than ERF-based devices (10-100 times smaller in volume for compara-

ble performance [11]). Furthermore, MRF-based devices can be made substantially more

compact and lighter in comparison to electrical motors for comparable performance [16].

In fact, such actuators exhibit superior mass-torque ratio over the commercially available

servo motors as shown in [10].
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2.2.4 Frequency Response

High bandwidth of the actuation system is essential for the transparency of a haptic device.

MRF respond to an applied field in the order of few milliseconds [17]. However, the

actuation response can become delayed due to the field propagation [18]. As the magnetic

field propagates from the coil, it is met by an opposing field produced by induction currents

in the magnetic circuit. The response delay produced by this effect is exacerbated by the

use of conductive material in the magnetic circuit. Nevertheless, MRF-based actuators are

considered as high bandwidth systems which can permit high bandwidth control, essential

for mirroring fast motions [15]. ERF-based actuators have higher bandwidth since there is

no delay in propagation of the electrical field.

2.2.5 Hysteresis and Nonlinear Behavior (Disadvantages)

The main problems with MRF-based devices is their nonlinear behavior and temperature

dependency. MRF-based actuators exhibits hysteresis due to the use of ferromagnetic ma-

terials. This translates to a hysteresis relationship between the input current and the output

torque which leads to tracking errors, unwanted harmonics, and undesired stick-slip mo-

tions [19, 20]. To develop accurate output torque to input current relationships, it is im-

portant to both understand and model the actuator hysteresis [19, 21]. This is still an open

area of research. Same as MRF-based actuators, ERF-based actuators can display hysteric

behavior as well. However, in the case of ERF-based actuators, it is the ERF itself and not

the surrounding material that displays the field dependent hysteric behavior [16].
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2.2.6 MRF vs. ERF

ERF exhibit several additional undesirable characteristics, including temperature depen-

dency, sensitivity to impurities in the fluid, electrical breakdown, and high voltage require-

ments. The properties of ERF are known to change with temperature [11]. Particularly, the

yield stress of ERF drastically varies with respect to temperature. Although MRF proper-

ties also vary with temperature, such deviations are minimal in comparison to ERF [10].

On the other hand, the existence of impurities inside the ERF can prove disastrous as it

results in the instability of the system and may cause electrical breakdown [11]. Regarding

the power consumption, MRF-based actuators requires low voltages (2-24 V ) and high cur-

rents (1-2 A), while ERF-based actuators requires very high voltages (2-10 kV ) and very

low currents (1-10 mA) [22]. One finds that the field energy requirements for comparable

MRF- and ERF-based devices are approximately equal [11]. In ERF devices power losses

are mainly due to electric conduction through the fluid, while in MRF devices such losses

are present in the coil used to produce the magnetic field [11]. Losses in the coil used to ac-

tivate the MRF will vary depending on the specifics of how coil is wound and the materials

used. Overall, these systems are considered as low power consumption systems. As an ex-

ample, in case of an MRF-based clutch developed in [9], the power of a USB port suffices

to power this system. However, the high voltage requirement of and ERF-based actuator

asks for complex circuitry systems capable of feeding such voltage (this is the main reason

for high price of ERF-based actuators in comparison to MRF-based actuators) [23]. In ad-

dition, such high voltage requirements can be highly dangerous when operator is using the

haptic device.

Hence, as discussed, MRF provides superior properties, higher reliability, and safer oper-

ation in comparison to ERF. Thus, in this work, MRF-based actuators are selected as the

more suitable smart fluid actuator for use in a haptic interface with medical application.
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2.3 Stability of Smart Fluid Based Haptic Interfaces

In order to study the effect of MRF-based actuators on the stability of teleoperation systems,

two theoretical approaches are considered, namely, (1) small-gain theorem and (2) virtual

wall benchmark.

2.3.1 Small-Gain Theorem

The small-gain theorem, which is one of the main results in control system theory, implies

that a feedback system is stable if the product of the IOS (Input-Output Stability) gains [24]

of the subsystems is less than one [25–29]. In a teleoperation system, two (or more) manip-

ulators called master and slave are connected over a network. In the presence of communi-

cation delays in the network, as a result of the time-varying delays, the teleoperation system

can become active, and hence unstable [30, 31]. Polushin et al. [32] presented a version

of the IOS Small-Gain Theorem that is designed specifically for interconnections where

the subsystems communicate asynchronously over multiple channels, and the communica-

tion is subject to multiple time-varying possibly unbounded communication delays. They

demonstrated that a multi-dimensional version of the small-gain condition guarantees the

stability of the interconnection of IOS subsystems under certain mild assumptions imposed

on communication process [8, 32, 33]. This result is applicable to a wide range of dynam-

ical systems whose parts communicate over networks. A review of this theorem is given

in this section and by taking advantage of its result the potential impacts of MRF-Based

actuators on the stability of the system will be discussed.

Let’s consider the system depicted in Fig. 2.1. A master device, with impedance Zm,

is interconnected to a slave device and environment, with combined impedance of Zse,

through a communication channel with time-varying delays of T1(t) and T2(t). A filter
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Figure 2.1: Interconnection of a master-slave system through a communication channel

with time delay.

Wf (s) is used to guarantee the stability of the system. One should note that in order have

ideal transparency the gain of this filter should be close to one, i.e., γf = ||Wf (s)||L1 = 1,

where γf is the IOS gain of the filter which is equal to its L1-norm [34].

One immediate result of the findings by Polushin et al. in [32, 33] is the condition of

stability for the system in Fig. 2.1. The master-slave device interconnected through network

with communication delay is stable if,

γmγseγf < 1 (2.1)

where γm = ||Z−1m (s)||L1 and γse = ||Zse(s)||L1 are gains of master and the slave subsys-

tems, respectively, AND the following two assumptions hold [32, 33],

• Assumption 1: There exist an upper bound for communication delays T1(t) and

T2(t) that does not grow faster than the time itself

• Assumption 2: t−max{T1(t), T2(t)} → +∞ as t→ +∞
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These assumptions can always be guaranteed by taking advantage of certain features of the

underlying communication protocol, and is not dependent on the communication channels

properties [32, 33]. As an example, the first assumption always holds in real world networks

as a result of sequence numbering and time-stamping. Also, the second assumption is

always satisfied unless the communication between the subsystems is totally lost.

The small-gain stability condition in Eq. (2.1) can be rewritten as,

γf <
||Zm(s)||L1
||Zse(s)||L1

(2.2)

The importance of the characteristics of a master device (haptic interface) becomes evi-

dent in this equation. When the slave device is in contact with a rigid environment, the

value of ||Zse(s)||L1 can become very large. As a result, in order to both satisfy stabil-

ity, i.e., Eq. (2.1), and transparency, i.e., γf ≈ 1, the haptic interface should be capable

of producing large impedance ||Zm(s)||L1 . If the master is incapable of creating such a

high impedance, then the filter gain should be decreased γf � 1 which in turn results in

a conservative design and degraded transparency [33]. As discussed in this chapter and as

will be shown in the upcoming chapters, the MRF-based actuators are capable of creat-

ing larger force/torques than that of conventional servo systems with comparable size and

weight which enables us to the have improved transparency, while guaranteeing stability.

In other words, by creating larger impedances ||Zm(s)||L1 , we are capable of simulating

contact with more rigid environments ||Zse(s)||L1 , while keeping γf close to 1 for better

transparency.
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2.3.2 Virtual Wall Benchmark

In this section, the effect of MRF-Based actuators on the stability of a teleoperation system

is studied from another theoretical point of view. To this end, the virtual wall experiment

is considered. A simple model of the virtual wall was proposed in [35], which consisted

of an encoder, a discrete unilateral spring-damper system, and a zero-order hold (ZOH),

i.e., Fig. 2.2. A virtual wall can generate energy which subsequently results in the system

becoming active and unstable. This is due to the delay that is caused by the zero-order hold

and asynchronous switching time [36]. Thus, a virtual wall provides a proper ground for

studying the stability of a teleoperation system and as a result it is considered as one of the

most efficient benchmarks in telerobotics for stability evaluation [37, 38].

Virtual Wall

• Interaction with a virtual wall is a typical (and one of the simplest)

haptic task

• A simple model of the virtual wall (from [Abbott & Okamura, 2005]):

21Thursday, June 17, 2010Figure 2.2: A simple model of the virtual wall consisting of an encoder, a discrete unilateral

spring-damper system, and a Zero-Order Hold (ZOH) [35]

Using the passivity theorem [34], a necessary and sufficient condition for the stability of

a haptic interface with physical damping of bp interacting with a virtual wall with virtual

stiffness K
W

and virtual damping B
W

(Fig. 2.3), can be derived. Such a condition, known

as Z-width, implies the maximum achievable virtual stiffness and virtual damping [39] and

is given by,

bp >
K

W
Ts

2
+B

W
(2.3)
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Figure 2.3: Block Diagram of the virtual wall haptic rendering system; including a haptic

interface with physical mass mp and damping bp, a virtual wall with virtual stiffness KW

and virtual damping BW , switching, and zero-order hold [39].

where Ts is the sampling period of the system. Fig. 2.4 depicts the stability region of the

system in the current and future cases. In this figure, region (R1) shows the stability margin

of the system. The most significant conclusion drawn from (2.3) is that physical damping

bp is essential to achieve stability and it cannot be substituted with virtual damping. As

a result, an active haptic device cannot simulate a virtual wall beyond the extent of its

physical damping while guaranteeing stability [40]. One approach to relax such limitation

is to add a constant physical damping bc to the haptic interface [39]. In this case the Z-width

will be modified as,

bp + bc >
K

W
Ts

2
+B

W
(2.4)

Region (R2) in Fig. 2.4 presents the stability margins after such modification. Although

the haptic device is more stable in this case, the addition of the constant physical damping

deteriorates the transparency of the teleoperation. This is due to the fact that the user feels
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additional damping forces, even if the slave is moving in free space. As a result, damping

cancelation is required to remedy this issue.

Another approach to increase the Z-width, while sustaining transparency, is to use a con-

trollable physical damping, as opposed to a constant one [41]. In this case, the Z-width is

modified as,

bp + b
cont

(H) >
K

W
Ts

2
+B

W
(2.5)

where b
cont

(H) is the controllable physical damping variable of the passive actuator which

in the case of MRF-based actuators is a function of H, the strength of the magnetic field.

The system can now exhibit low damping, with no need for damping cancelation, when

in free space motion, and consequently have better transparency. On the other hand, the

system can have high damping when in contact with stiff objects, hence better stability. In

this way, the passivity bounds are extended to the limits of the achievable physical damping

variable (e.g., magnetic saturation in MRF actuators) [14], i.e., region (R3) in Fig. 2.4.

Some passive devices, such as MRF-based brakes and dampers, are capable of creating a

controllable damping. The idea is to use the controllable physical damping of such devices

to simulate the virtual damping. It is shown in [40] that the passive force exerted using

such devices fc can be modeled as a viscous friction which is a function of the strength of

the magnetic field H and the speed v,

fc = bcont(H)|v|sgn(v) (2.6)

In other words, MRF-based devices can display virtual damping by regulating the magni-

tude of the viscous friction [40]. However, an MRF-based brake or damper, on its own (as
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Figure 2.4: Stability margin of virtual wall display for no additional damping (R1), addi-

tional constant damping (R2), and controllable damping (R3).

a passive actuator), is not capable of simulating both stiffness and damping of the virtual

wall. In fact, a hybrid semi-active combination of a motor (as an active system) and an

MRF-based brake (as a passive system) is required. In this regard, MRF-based clutches

are the most useful type among such devices for use in haptic interfaces [42]. The struc-

ture and design of an MRF-based clutch are described in detail in previous works in our

lab, e.g., [17]. A brief review is given in the next section. The advantage of the config-

uration proposed in [17], is that both KW (displayed by motor) and BW (displayed by

the MRF-based clutch) can be controlled using the strength of the magnetic field in the

clutch. In other words, in this configuration, the motor rotates at a constant velocity while

the MRF-based clutch controls the output torque. By controlling the magnetic field, the

MRF-based clutch simulates BW through controlling the magnitude of the viscous friction

in the clutch [40] and mimics KW by regulating the portion of the motor torque derived to

the output.
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2.4 Experimental Validation: Virtual Wall

In order to evaluate the effect of MRF-based actuators on the transparency and stability

of haptic devices, experimental results from virtual wall display obtained by using two

single-DoF haptic displays are presented and compared in this section. The first haptic in-

terface consists of a prototype MRF-based clutch (designed and constructed in our research

group [17]) that couples a brushless DC motor to the haptic interface handle. The result of

this system is then compared with an equivalent haptic interface that is directly coupled to

a brushless DC motor (Maxon EC-60).

REMARK 2. One should note that the prototype clutch used for this experimental vali-

dation was previously designed for industrial applications and not specifically for haptic

interface. Nevertheless, the setup provides a good ground to study the benefits of MRF-

based actuators in haptic systems. The prototype clutch only serves as a-proof-of-concept

setup to validate the advantages of MRF-based devices highlighted in previous sections. In

fact, in Chapter 3, the design and analysis of a small-scale MRF-based clutch, specifically

designed for haptic applications, is presented.

2.4.1 Experimental Setup

As mentioned earlier, two single-DoF haptic devices were considered. The experimental

setup is shown in Fig. 2.5(a). A brief overview of this setup is given here. Further details

can be found in [17, 43].

MRF-Based Haptic Interface: The mechanism uses an MRF-based clutch at its core [17].

Fig. 2.5(b) shows the cross-section of a typical multi-disk MRF-based clutch. The input

shaft breaks out into a set of input disks which are aligned in parallel to a set of output disks
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(a) (b)

Figure 2.5: (a) The experimental setup. The mechanism takes advantage of MRF-based

clutches as part of the actuator. (b) Sectional view of the prototype MRF-based clutch

attached to the output shaft. MRF fills the volume between input and output disks. A driver

motor applies a constant torque to the input shaft. By energizing the electromagnetic coil,

the viscosity of MRF, thereby the compliancy of the clutch are controlled. As a result, the

output torque of the clutch can be controlled.

In this setup, the coil of the clutch is driven by a servo amplifier (Maxon 4-Q-DC Servo-

amplifier ADS 50/5) set up in torque mode. A servo motor (Maxon EC-60) provided the

rotational input to the clutch. A handle is connected to the output shaft of the clutch and

the user can interact with the interface using this handle. An ATI Force/Torque sensor

is placed inside the handle to measure the forces/torques applied by and to the human’s

hand. Although this setup is only capable of generating forces in one direction [17], it is

suitable for our experimental validations since all the forces experienced from the wall are

in the same direction. The clutch is mounted on an experimental platform that incorporates
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an angular encoder (Renishaw RM22I) to read the position of the output shaft. Embedded

Hall sensors measure the magnetic field inside the clutch. A National Instruments (NI USB-

6229) multifunction I/O device is used to read the measured parameters and to implement

a closed-loop control for the output torque of the clutch.

One should note that, the output torque of the clutch is only controlled through regulating

the magnetic field of the clutch. The Maxon motor plays no role in controlling the output

torque except providing the input motions in constant velocity (refer to Section 2.3 for more

details). In order to control the output torque of the clutch, first, a Hall sensor is used to

measure magnetic field density inside the clutch. Next, the Bingham Visco-Plastic (BVP)

model [19, 44, 45] is used to estimate the shear stress by using magnetic field flux density,

and consequently output torque. Based on this calculation a PID controller generates the

current required to control the output torque.

Electrical Motor-Based Haptic Interface: The setup in Fig. 2.5 can also be used to study

the performance of direct and rigid coupling of a motor in a haptic device. The handle,

connected to the output shaft of the clutch, can be removed and attached to the output

flange of Maxon EC-60 motor directly (Fig. 2.5). In this way, the motor can be used as a

1-DoF haptic interface. During these tests, the belt coupling of the gears to the clutch was

removed. The built-in PID controller in the EPOS motion controller was used to control

the output torque.

REMARK 3. Application of Herschel and Bulkley (HB) method [46] for estimating the

shear stress, instead of BVP, has also been reported in the literature. However, one should

note that the HB model is more useful in applications with high shear rate, e.g., MRF-based

dampers. In the current application, the shear rate is low and as a result the BVP model

is sufficiently accurate [47]. Another concern is that Hall sensors can alter the flux lines

inside the system. The motivation for using Hall sensors is the fact that it enables us to
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bypass the main hysteresis of the system. In fact, our previous study demonstrated that

the error due to the sensor was minimal and the considered torque estimation method (Hall

sensor + BVP) showed high accuracy [47].

2.4.2 Results

Using the aforementioned setup, several experiments were performed to compare the sta-

bility and transparency of MRF-based clutches with electrical motors when implemented

in a 1-DoF haptic interface of virtual wall. The virtual wall was implemented as a virtual

torsional spring with stiffness K
W

and a virtual rotational damper with damping coefficient

B
W

. At the frequency of 500 Hz (maximum achievable frequency using the current setup),

interaction with a virtual wall with different stiffness and damping was tested using both

types of couplings, i.e., direct vs. MRF-based Clutch. The user held the handle and made

several contacts with the virtual wall in each case.

First, a virtual wall with stiffness of K
W

= 10 Nm
rad and damping of B

W
= 10 Nms

rad was

considered. In this case, due to the low stiffness, the wall exhibited high compliancy and it

deformed substantially. Fig 2.6(a) presents the results of the interaction with the wall using

the clutch and then using the motor as haptic devices. These plots depict the torque applied

by the wall and the torque generated by the actuator. In addition, it depicts the position of

the handle with respect to the wall (the wall starts at 0 deg). As seen, the clutch exhibited

much higher transparency when the user makes contact with the wall. In fact, the root mean

square (RMS) of the errors between the torque of the virtual wall and the torque felt by the

user hand are 0.119 Nm and 0.667 Nm for the clutch and the DC motor, respectively. Then,

a wall with higher stiffness was considered (i.e., K
W

= 400 Nm
rad and B

W
= 10 Nms

rad ). The

results are presented in Fig. 2.6(b). Once more, the clutch exhibits better transparency. The
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(a) K
W

= 10 Nm
rad (b) K

W
= 400 Nm

rad (c) K
W

= 600 Nm
rad
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Figure 2.6: Results of interaction with the virtual wall at 500 Hz with damping B
W

=

10 Nms
rad and different stiffness for the MRF-based clutch (top row) and the DC motor

(bottom row). The virtual wall starts at 0 deg position.

RMS errors for the torque in this case are 0.137 Nm and 0.94 Nm for the clutch and the DC

motor, respectively. The advantages of the MRF-based clutch become more evident when

the virtual wall becomes stiffer (i.e., K
W

= 600 Nm
rad and B

W
= 10 Nms

rad ). The results for

this case are depicted in Fig. 2.6(c). In this case, the clutch exhibits a few ripples in the

output torque when a contact is made with the wall. However, these ripples are damped out

after a few cycles. The RMS error of the torque is 0.185 Nm for the clutch. As it can be

seen, the user is capable of making several stable contacts with the wall. However, in the

case of the DC motor, the system becomes unstable as contact is made, and the user loses

control. This is evident in the position of the handle in bottom image of Fig. 2.6(c). This

result exhibits the better performance of the MRF-based clutch for use in haptic devices.
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In fact, the clutch remained stable for K
W
< 1700 Nm

rad . The comparison between the

transparency of the two systems in the tests performed are given Table 2.1.

In another experiment, the maximum achievable stiffness with either of the haptic interfaces

were obtained for several values of virtual damping B
W

. Fig. 2.7 presents the results. The

maximum achievable virtual stiffness using DC motor is limited due to constant physical

damping of the motor. In the case of MRF-based clutch higher Z-width can be achieved.

This shows the suitability of MRF-based actuators for use in haptic devices.

2.5 Concluding Remarks

MRF-based actuators exhibit promising characteristics for applications in haptic devices.

Low output inertia, low mass-torque ratio, superior performance and bandwidth, preci-

sion controllability of output torque, and intrinsic passivity of MRF-based actuators are

important characteristics for haptic interfaces. The results of the virtual wall experiment

conducted in this paper on a large-scale prototype of an MRF-based clutch support these

Table 2.1: Transparency of the MRF-based clutch and DC Motor for different stiffness

K
W

[Nm
rad ]

RMS of error in Torque Display [Nm]

MRF-based clutch DC Motor

200 0.105 0.803

400 0.137 0.940

600 0.185 Unstable

1000 0.185 Unstable

1700 Unstable Unstable
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rad ] for different virtual damping
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rad ] at 500 Hz for the MRF-based clutch and DC motor

claims and demonstrate the desirable performance of such actuators when used in a haptic

device. This provides a strong motivation for developing small-scale MRF-based actua-

tors as a lightweight and compact actuating systems, which will be discussed in Chapter 3.

Specifically, such actuators are well suited for haptic devices which are required to provide

high-torque capacity, while having better stability and transparency.
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Chapter 3

Design of a Small-Scale MRF-Based
Clutch Suitable for a Haptic Interface

The promising results obtained in Chapter 2 led to the design and construction of a small-

scale MRF-based actuator for a haptic interface. In this chapter, the design of such a small-

scale MRF-based clutch, suitable for a multi-DoF haptic interface with a medical applica-

tion, is discussed and its torque capacity, inertia, and mass are compared with conventional

servo systems. Conclusions drawn from this chapter demonstrates the great potential of the

new design to be used in haptic applications.

This chapter contains material published in (1) ”Application of Magneto-Rheological Fluid Based
Clutches for Improved Performance in Haptic Interfaces”, presented at the IEEE Int Conf on Robotics and
Automation, Hong Kong, June 1-4, 2014. and (2) ”Suitability of Small-Scale Magneto-Rheological Fluid
Based Clutches in Haptic Interfaces for Improved Performance”, accepted for publication in the IEEE/ASME
Transactions on Mechatronics, August 2014.
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3.1 Introduction

In Chapter 2, actuators based on Magneto-Rheological Fluid (MRF) have been proposed

as an alternative for electrical motors to be used in haptic devices. Such systems exhibit

remarkable characteristics, including high yield stress, low mass-torque and inertia-torque

ratios, compact size, intrinsic passivity, and precision controllability [1, 2]. It is expected

that the superior characteristics of MRF-based actuators in comparison to active actuators

will enable the design of a more transparent and stable haptic interface [3]. An investigation

into this idea was performed in the previous chapter, and the tests on a large-scale MRF-

based clutch, used as an haptic interface, supported these claims. However, as the work

moves from the large-scale systems (not suitable for haptic applications) toward smaller

scale ones (suitable for haptic interfaces), the main factors effective in the performance

of such systems will be reduced significantly which might result in degraded superiority of

MRF-based systems over electrical motors. The two main factors affecting the performance

are the contact area between the two surfaces containing MRF and the strength of magnetic

field which is a function of the magnetic reluctance and number of magnetic coil turns.

In order to address this concern, a new design for small-scale MRF-based clutch, called

”Armature-Based” design, which is suitable for a multi-DoF haptic interface is given in

Section 3.2. In designing this new actuator the main focus is on higher contact area as well

as stronger and more efficient use of magnetic field in comparison to conventional MRF-

based clutch designs. By providing the analysis of such small-scale MRF-based system in

Section 3.6, i.e., its torque capacity, inertia, and mass, it is shown that in fact the proposed

MRF-based actuator still exhibits desirable characteristics in comparison to the small-scale

conventional actuators. This can contribute to the performance of a haptic interface. The

current study lays the ground work for developing a multi-DoF haptic interface to be inte-

grated in a surgical training environment, which will be presented in Chapters 4 and 5.
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3.2 Preliminary Design of a Small-Scale MRF-Based Clutch

This section provides the results of a preliminary study on the design of such an actuator.

The proposed actuator in this section is developed and the results are given in Chapter 4.

The end goal of this project is to implement such actuators into a multi-DoF haptic interface

which will be integrated in a surgical training environment. This is discussed in Chapter 5.

3.3 Proposed Clutch Structure

There are two main approaches to the design of MRF-based clutches reported in the lit-

erature, namely multiple-disk and drum-based designs [4]. The prototype discussed in

Section 2.4 is an example of multiple-disk clutch where MRF fills the gap between the

disks. Fig. 3.1(a) depicts the structure of such a design. In a disk-based design, the input

shaft breaks out into a set of input disks, which are aligned in parallel to a set of output

disks attached to the output shaft. MR fluid fills the space between input and output disks.

A driver motor applies a constant torque to the input shaft. By energizing the electromag-

netic coil, the viscosity of MR fluids, thereby the compliancy of the clutch is controlled [5].

In a drum-based design, the MRF fills the gap between two concentric cylinders, depicted

in Fig. 3.1(b) [6]. Using a cylindrical coil inside the inner cylinder the shear stress between

the two surfaces can be controlled [7].

Modified and hybrid versions of these two designs also exist [8]. The drum-based design

is known to exhibit higher torque-volume ratio [4]. Thus, this approach is suitable when

a compact and high-torque capacity actuator is desirable. On the other hand, the drum

based design exhibits higher friction and inertia as the size of the actuator increases [5].
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One major drawback of this design is the limited volume of the MRF that is energized

between the two cylinders. Since the axis of the coil is collinear to the axis of the inner

cylinder in this design, the magnetic field is applied to the MRF only at the two ends of the

coil [9]. Hence the majority of the MRF gap is not activated during operation. In addition,

an important tradeoff exist in designing drum-based clutches. By increasing the area that

is needed for wiring the coil, the strength of the generated magnetic field will be increased.

However, by doing so the area of contact between the inner and outer cylinder decreases

which results in lower torque. In addition, since the field is only generated by one coil the

magnetic circuit can become saturated which can significantly limit the torque capacity of

the system. In this study, a new design – called armature-based – is proposed to improve the

performance of the drum-based approach by increasing the effective MRF volume and the

(a)

(b)

Figure 3.1: The structure of (a) disk- [1] and (b) drum-based clutches [6].
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area of contact, as well as, improving the efficiency of magnetic field usage. The structure

of the armature-based actuator is similar to that of a DC motor, as shown in Figs. 3.2(a,b).

(a)

Sealing
Outer

Casing
Spacers Armature

w. Windings
Hall

Sensor

Length <6cm

Diameter

< 4cm

(b)

Input
Speed/Torque

Output
Speed/Torque

(c)

Figure 3.2: (a) Cross-sectional and (b) exploded view of the proposed small-scale MRF-

based clutch. (c) Depiction of the proposed clutch operation.
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In this design, the MRF fills the gap between a cylindrical casing and an armature, both

made of ferromagnetic materials. The wire windings on the armature creates a magnetic

field in the axial direction. Spacers, made out of light and nonmagnetic materials, separate

the armature stack slots to avoid drag forces created by the fluid accumulated between the

armature poles. Two Hall sensors will be used at the top of two of the poles (symmetrically)

to measure magnetic field strength. As opposed to DC motors, commutation is not required

in this design since there is no need for alternating poles.

Fig. 3.2(c) describe the overall configuration of this actuator. A constant input speed/torque

is applied to the outer casing of the clutch, e.g., using a motor. The output speed/torque

controlled by the clutch is delivered to the output link using cables/belts. It should be

noted that the clutch is only capable of providing unidirectional motion. In Chapter 5, the

expansion of the proposed design into a multi-DoF system is discussed.

3.4 Figures of Merit

In this section, the derivation and analysis of the torque capacity, mass, and reflected inertia

of the armature-based clutch is given. The symbolic dimensions of the outer casing and a

single pole of the armature-based clutch is shown in Fig. 3.3. Rc1 and Rc2 , are the outer

and inner casing radii, respectively. Ra1 and Ra2 are the outer and inner radii of armature

tooth, respectively. θp is the angle of the arc of the armature tooth. R
sh

is the radius of the

armature shaft. Wp, WMR, and Wc are the thicknesses of the armature pole, MRF gap, and

the outer casing, respectively. In addition to these parameters, Lc is the length of clutch.

Also, Np, Nw, and i are the numbers of poles, number of wire turns at each pole, and the

armature coil current, respectively.
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Figure 3.3: Dimension of the outer casing and a single pole of the clutch

3.4.1 Magnetic Reluctance and Flux

In order to obtain the torque capacity of the proposed design, first the magnetic reluctance

of different parts of the magnetic circuit are obtained. A simplified model of the magnetic

circuit is depicted in Fig. 3.4.

RRRR1111

RRRR2222RRRR3333

RRRR4444

RRRR5555

RRRR6666

…

…

++++

––––

++++
––––

N
w
i

Figure 3.4: Magnetic circuit model of the armature-based clutch
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Based on the dimensions of the clutch, the length lk and area Ak and subsequently, the

magnetic reluctanceRk of each armature part is obtained as follows (k = 1, . . . , 6),

l1 = θp(Rc1 +Rc2) A1 = WcLc R1 =
l1

µstA1

l2 =
Wc

2
A2 = θpRc2Lc R2 =

l2
µstA2

l3 = W
MR

A3 = θpRa1Lc R3 =
l3

µ
MR
A3

l4 = Ra1 −Ra2 A4 = θpRa2Lc R4 =
l4

µstA4

l5 = Ra2 −Rsh
A5 = WpLc R5 =

l5
µstA5

l6 = 2θpRsh
A6 = R

sh
Lc R6 =

l6
µstA6

(3.1)

where µst and µ
MR

are the magnetic permeability of the steel and the MRF, respectively.

The magnetic flux φ and the magnetic flux density B at the MRF gap perpendicular to the

armature surface can now be obtained as,

φ =
4Nwi

R1 + 4R2 + 4R3 + 4R4 + 4R5 +R6

(3.2)

B =
φ

A
MR

=
φ

A3

(3.3)

where A
MR

= A3 is the activated area of MRF at each pole. The magnetic saturation

should be considered in the above equations. Bingham-Visco plastic model [10–12] can be

used to calculate the shear stress τ at the gap,
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τ(B,ω) = τy(B) + ηωRa1W
−1
MR

(3.4)

where τy is the field-dependant yield stress, η is the newtonian viscosity, and ω is angular

velocity between the casing and armature. Data relating to the yield stress τy of a fluid are

generally published by the manufacturer. Typical values of this parameter are 50 to 100

kPa. The viscosity η of the carrier fluid is typically in the range of 0.1-0.3 Pa.s. Hence, in

this study, we consider the torque transmitted solely by the field dependant yield stress of

the MRF. Calculating the value of τy, the magnitude of the generated braking torque T will

be obtained as,

Tarm = Npτy(B)A
MR
Ra1 (3.5)

REMARK 4. This method of calculation of the output torque is based on the direct applica-

tion of the physical laws as well as measurement of the applied magnetic field. This method

has been previously used in other studies to calculate the output torque [6, 10, 13–15].

From (3.5), it is clear that the amount of torque a clutch can produce highly depends on

the strength of the magnetic field. In order to create a stronger magnetic field, a larger

number of wire turns in the winding and higher electrical current are required. The number

of wire turns and the wire gauge (maximum safe current) are limited by the available space

in the armature stack slots, as well as, the limit on the mass and inertia of the armature.

On the other hand, the dimensions of the armature poles and shaft can limit the created

magnetic field due to magnetic saturation. If the smallest areaA
min

= min(A1, . . . ,A6) of

the armature magnetic circuit is designed to be much smaller than the MRF gap area, i.e.,

A
min
� A

MR
, then that area can become saturated (i.e., φ

Amin
� φ

A
MR

), and significantly

reduce the magnetic field at the MRF gap.
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An important factor affecting the transparency of a haptic interface is the off-state friction

forces and torques. In order to calculate the value of zero-field friction torque for the

proposed clutch, first the value of magnetic field density is set to zero in (3.4). Then for

any given rotational speed the zero-field shear stress τ(0, ω) is obtained. This value is

substituted with τy(B) in equations (3.5) to calculate the zero-field torque T0,

T0(ω) = NpAMR
(τy(0)Ra1 + ηωR2

a1
W−1

MR
) (3.6)

Note that the sealing friction is not included in this calculation.

3.4.2 Actuator Mass and Reflected Inertia

As mentioned, the effective inertia of the armature and the weight of the clutch are also

important factors with regards to the transparency of a haptic interface. The weight of the

clutch M
cl

can be obtained as,

M
cl
= ρst(Vsh

+NpVp + Vc) + ρ
MR
V

MR
+Mw (3.7)

where ρst and ρ
MR

are the density of steel and MRF, respectively, V
sh

, Vp , Vc , VMR
are the

volume of the armature shaft, pole, outer case, and MRF gap, respectively, and Mw is the

mass of wire windings. These values are derived as,
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V
sh

=πR2
sh
Lc (3.8)

Vp =Lc(Wp(Ra2 −Rsh
) +

θp
2
(R2

a1
−R2

a2
)) (3.9)

Vc =πLc(R
2
c1
−R2

c2
) (3.10)

V
MR

=πLc(R
2
c2
−R2

a1
) (3.11)

Mw =2NpNw(Lc +Wp)mw (3.12)

where mw is value of the mass per unit of the wire used in the coil. The reflected inertia of

the armature Jarm can also be obtained as,

Jarm = J
sh
+NpJp + Jw (3.13)

where J
sh

, Jp , and Jw are the moment of inertia of the armature shaft, pole, and wire

winding, respectively. These values are derived as,

J
sh

=
π

2
ρstLcR

4
sh

(3.14)

Jp =NpρstLc

[θp
4
(R4

a1
−R4

a2
) + . . .

W 3
p

12
(Ra2 −Rsh

) +
Wp

3
(R3

a2
−R3

sh
)
]

(3.15)

Jw =
1

2
Mw(R

2
sh
+R2

a2
) (3.16)
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3.5 Optimization

An optimization problem is defined and solved to calculate the proper dimensions which

result in the optimal characteristics of the MR clutch. Three main factors are considered in

this optimization, namely the maximum torque, inertia, and zero-field friction torque of the

clutch. Each factor is a function of MR clutch dimensions, represented with the vector D,

plus the number of wire turns Nw. Hence, The objective function is defined as,

E(D, Nw) =
T0(0)Jarm

TarmJcritical

(3.17)

where J
critical

is the maximum allowable value for the inertia of the armature (defined based

on system minimum requirements). A set of constraints f(D, Nw), in the forms of equali-

ties and inequalities, are also defined. These constraints limits the minimum or/and maxi-

mum allowable range for the dimensions and wire turns and they include, but not limited

to,

– the desired diameter and length of the clutch

– trivial relations between dimensions (e.g., Rc2 < Rc1 , Ra1 < Rc2 , etc.)

– constraints due to magnetic saturation (e.g., φ
Amin

≤ Bsat , Bsat is the saturation field)

– constraints due to machining and structural limitations (e.g., minimum thickness of

the casing wall, poles, etc.)

– minimum acceptable dimensions (e.g., the optimization tends to make the MRF gap

as small as possible to increase magnetic field, hence, this should be avoided by

setting a lower bound on its dimensions)

– limitation on the number of wire turns due to the available space between the arma-

ture stack slots and the magnetic saturation
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Thus, the optimization problem is defined as,

min

subject to

f(D, Nw)

E(D, Nw) (3.18)

Several trade-offs exist in this problem. One such trade-off is the effect of the number of

wire turns on the torque capacity and armature inertia. By increasing Nw the magnetic flux

density in the MRF gap becomes larger which in turn can result in higher generated torque.

However, this degrades the transparency of the system by adding more weight and inertia

to the armature. In addition, the increase in number of turns becomes redundant after a

certain level due to the magnetic saturation in narrower parts of the magnetic circuit. The

thickness of MRF gap (i.e., W
MR

) also plays an important role in this optimization. The

smaller the MRF gap, the greater the maximum produced torque will be. However, the

small gap size results in higher value of zero-field torque. In the rest of the chapter, the

results obtained based on the above optimization will be used in subsequent calculations.

Since, the problem defined in (3.18) is nonlinear, a numerical approach from the family of

Quasi-Newton optimization techniques, specifically, Davidson-Fletcher-Powell is used for

obtaining a solution [16, 17]. This algorithm exhibits quadratic convergence.

3.6 Comparison with MRF and Conventional Actuators

In this section, the characteristics of the armature-based clutch are compared with that of

counterpart MRF-based clutches and DC motors.
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3.6.1 Comparison with Drum- and Disk-Based Clutches

To study the magnetic field inside the MRF-based actuators, the Finite Element Modeling

(FEM) method was used. This work took advantage of FEMM Software [18] to perform

the FEM. Fig. 3.5(a) depicts the magnetic field paths inside an armature-based clutch and

Fig. 3.5(b) shows the magnitude of the flux density within the MRF gap, perpendicular

to the armature surface. Figs. 3.5(b) and (c) present the same information for a drum-

based and a disk-based clutch, respectively. Note that the volume of all three actuators are

considered to be the same.

As seen, the armature-based design creates a more homogenous and stronger magnetic field

at the MRF gap. On the other hand, the magnetic field in a drum-based design is stronger

closer to the coil. In this design, the MRF gap is not uniformly activated and a large portion

of the MRF is not activated. These shortcomings limit the maximum achievable torque in

a drum-based clutch. As will be discussed later in this section, disk-based actuators exhibit

the lowest magnetic field magnitude due to their large MRF gap. However, disk-based

design takes advantage of a large overlapping area between the input and output disks

which significantly increases the torque capacity of a disk-based clutch. In addition, there

is no trade off between area of contact and the number of wire turns in this design, as

opposed to drum-based systems. As the size of the clutch becomes smaller, it is anticipated

that the torque capacity of the disk-based clutch decreases drastically due to the decrease

in the area of MRF gap.

The torque of a drum-based clutches can be obtained as [7],

T
drm

= 4πτy(B)LpR
2
dr (3.19)
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Figure 3.5: Figures in the left column show the magnetic field distribution in (a1) cross-

sectional view of armature-based, and axisymmetric views of (b1) drum-based, and (c1)

disk-based designs, with same volume. Figures in the right column depict the magnitude

of the magnetic density in the MRF gap (shown by red dashed lines) perpendicular to the

(a2) armature surface, (b2) cylindrical pole surface, and (c2) disk surface.
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Figure 3.6: Comparison between the torque capacity of armature-, drum-, and disk-based

designs with comparable volume

where Lp and Rdr are the length of cylindrical pole and the radius of the inner drum,

respectively. In the case of a disk-based clutch this value is derived as [5],

T
dsk

=
4

3
πNdτy(B)(R3

d1
−R3

d2
) (3.20)

where Nd, Rd1 , and Rd2 are the number, outer radius, and inner radius of the disks, respec-

tively. In order to compare the torque capacity of the three designs, clutches with identical

volume were considered and their maximum torque capacities were obtained based on

equations (3.5), (3.19), and (3.20). The results are depicted in Fig. 3.6. For the armature-

and drum-based clutches the dimensions were identical with the dimensions of Maxon

EC-Max series (included in Table 3.1). For the disk-based design, equal volume were con-

sidered. The number of disks in the latter case was calculated based on the corresponding

dimensions and it ranged between two to four pairs of disks.
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As seen, our proposed armature-based design exhibits a higher torque capacity in compar-

ison to its counterparts. This can be attributed to several factors in this design; (1) The

strength and homogeneity of the magnetic field at the MRF gap is an important factor as

can be seen in equation 3.5. (2) Another important factor is the larger area of activated

MRF between the armature and the outer casing in this structure. The poles cover the

whole length of the clutch, which is not the case for the drum-based clutch. This results

in a larger overlapping area (i.e., NpθpRa1Lc > 2πLpR
2
dr). The disk-based torque capacity

decreases as the size of the disk overlap becomes smaller. (3) The placement and concen-

tration of the coil in one place in the drum- and disk-based designs also limits the output

torque due to the problem of magnetic saturation. In fact, the increase in the number of wire

turns becomes redundant after a certain level in this design since some parts of the actuator

become saturated due to the highly concentrated generated magnetic field. This problem

is alleviated in the armature-based design by sharing the responsibility of magnetic field

generation between multiple poles.

The inertia- and mass-torque ratios of the three designs were also compared. Figs. 3.7(a)

and (b) present the result of such comparisons. It can be concluded from these results

that the armature-based clutch exhibits better inertia-torque and mass-torque ratios, which

makes it suitable for application in haptic interfaces.

Next, the zero-field friction torque of the three designs are compared. This is done for an

armature- and drum-based clutch with diameters of 3 cm and lengths of 6 cm, as well as, a

disk-based actuator with thickness of 3 cm, diameter of 4.25 cm, and 4 sets of disks. Note

that the friction caused by sealing is not considered in this section. The result is presented

in Fig. 3.8. The drum-based design exhibits the lowest friction torque among the three.

However, when considering the percentage of such a force (i.e., T0
Tmax

), the armature-based

design is the most optimized. This percentage ranges between 3.4 to 6.2%. This value is
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Figure 3.7: Comparison of (a) inertia-torque rand (b) mass-torque ratios between armature-

, drum-, and disk-based designs with comparable volume

4.5−8.5% for the drum-based and 15−39% for the disk-based designs. One possible solu-

tion for further decreasing the zero-field torque might be the use of MRF foam as reported

in [6]. However, such a solution and its possible effects on the clutch torque capacity will be

tested in the manufacturing stage of the study. As discussed in this section, the armature-

based design exhibits better characteristics comparing to drum- and disk-based clutches.

This can contribute to the stability and transparency when used in a haptic interface. The
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Figure 3.8: Comparison of zero-field friction torque between armature-, drum-, and disk-

based designs with comparable volume

main disadvantage of this design is its complex structure relative to drum- and disk-base

designs. Nevertheless, the structure is simple enough for manufacturing at a low price.

3.6.2 Comparison with Conventional DC Motors

In order to further assess the suitability of the proposed armature-based design, a com-

parison with Maxon EC-max DC motors [19] is performed in this section. This series of

motors includes some of the most powerful and versatile small-scale DC motors. To per-

form the comparison, the armature-based MRF-based clutches with the exact dimensions

of the Maxon motors and with six poles (Np = 6) are considered. Then, their torque capac-

ity, reflected inertia, and weight are compared with those of the Maxon motors. Table 3.1

presents the torque capacity of the motor and the clutch with similar dimensions. The

results show the superiority of the clutch in comparison to the Maxon motors.
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Table 3.1: Comparison between torque capacity of Maxon EC-max and MRF-based clutch

with same dimensions Note: ECXX YYW = EC-Max XX, YY Watt

Motor Model E
C

40
12

0W

E
C

40
70

W

E
C

30
60

W

E
C

30
40

W

E
C

22
25

W

E
C

22
12

W

E
C

16
8W

Diameter [cm] 4 4 3 3 2.2 2.2 1.6

Length [cm] 8 5.5 6 4 4.5 3 3

Nominal Torque [Nm] 0.168 0.094 0.063 0.034 0.023 0.010 0.008

Stall Torque [Nm] 2.090 0.636 0.519 0.160 0.127 0.035 0.022

Clutch Torque [Nm] 3.610 2.830 1.890 1.190 0.497 0.330 0.068

Next the mass and effective inertia are compared. Fig. 3.9 presents a comparison of the

inertia-torque and mass-torque ratios. MRF-based clutches exhibit lower ratios, which

demonstrates their suitability for use in a haptic interface.

It should be noted that to have a fair comparison between the inertia of the actuators, the

reflected inertia of the DC motors is calculated as Jeq = G
2

rJrot . Jrot is the rotor inertia of

the DC motor [19]. Gr is the gear ratio required to create an output motor torque compara-

ble to that of the clutch, i.e., Teq = GrTstall
. However, the gear reduction is not considered

when comparing the actuator’s mass. The stall torque (and not the nominal torques) of the

motors are considered in these results.

3.7 Challenges and Shortcomings

A few challenges are expected in developing the armature-based clutch and the multi-DoF

haptic interface. In what follows some of the main challenges and shortcomings of the de-

signed actuators are presented and the planned solutions to avoid or remedy these problems

are discussed.
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Figure 3.9: (a) Inertia to torque (with gear reduction) and (b) mass to torque (without gear

reduction) ratios for Maxon EC-max and MRF-based clutch

3.7.1 Heat Generation

The electrical current in the wound armature can generate thermal energy in the clutch. MR

fluids have a typical operable temperature range of -40 to 150oC, however their behavior

might change as a result of temperature variation. The outer casing of the clutch (made of
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steel), which has a large area of contact with air can act as a heat sink. This can moderate

the temperature deviations. Fins can be added to the surface of the casing to increase the

area of thermal exchange. Temperature sensors should be integrated in the clutch to account

for any temperature deviations in the system model. Since temperature-dependant model

variation in MRF characteristics is very moderate [13], the integration of the temperature

sensors in the system will be postponed for the second generation of the device.

3.7.2 Leakage

The proper sealing of the clutch to avoid any fluid leakage is an important issue. The

heating effect of the wires, which can increase the fluid pressure, adds to the importance of

proper sealing in the clutch. O-rings are considered to seal the gap between the outer casing

and the caps. This method has been proved effective in previous designs in our group. The

main challenge is in sealing the bearing that is placed between the armature shaft and the

casing caps. If any particles leak into the balls of the bearing, it can cause friction and even

jamming in the bearing. Shielded bearings can be implemented to decrease the chance of

leakage, however, based on the existing experience, this solution helps but is not sufficient.

Stretch-fit rotary-shaft oil seals, placed on the armature shaft, should be used to protect the

bearing. But this adds to the friction of the system.

3.7.3 Friction

Any friction in the system can degrade the transparency of the system. The zero-field

friction torque (Section 3.6) is caused as a result of the viscosity of the fluid. Any residual

magnetic field in the system can result in a biased shear stress and the user will feel added

friction as a result. Also the aforementioned oil seals can create large frictions. Although
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this is a serious concern, the antagonistic configuration, presented in Chapter 5, will solve

this problem to a great extent (if not completely). This is due to the fact that the created

friction forces in a pair of clutches antagonistically connected to a single joint will have

similar magnitude, but in opposite directions. Hence, the friction forces will cancel out

each other.

3.7.4 Thickening

MRF are consisted of an oil-like carrier fluid and suspended ferrous particles. If the fluid is

left stationary for a long time, the particles will precipitate and the thickening of the fluid

will occur. The MRF manufacturers alleviated this problem by using stabilizer additives

to the fluid. This will slow down the precipitation and elongates the fluid life. Even if as

the result of immobility the fluid is thickened, it is believed that the particles will mix very

quickly by creating a few jerky motion. The facts that these fluids have been used in auto-

motive industry for more than a decade shows the durability of such devices. Nevertheless,

a device might require maintenance as a result of severe thickening, which will add to the

effective cost of the system.

3.7.5 Nonlinearity and Hysteresis

As mentioned in Chapter 2, MRF-based actuators suffer from nonlinear hysteretic relation-

ships between the input current and output torque. The overall hysteresis in MRF-based

actuators can be as small as 5%, and is comparable to the hysteresis present in most com-

mercial dampers and pneumatic actuators with respectively 50% and 40% of hysteresis.

Nevertheless, this nonlinearity causes inaccuracy in the output response of the actuator,

as well as, instability of the closed loop system [20]. Therefore, it is essential to study
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and model the current-torque relationship in MRF-based actuators for a reliable control

and actuation and delivering high-fidelity force/torque control in haptic interfaces utilizing

MRF-based actuators. This issue is addressed in Chapter 4.

3.8 Concluding Remarks

MRF–based actuators exhibit promising characteristics for applications in haptic devices.

Low output inertia, low mass-torque ratio, superior performance and bandwidth, preci-

sion controllability of output torque, and intrinsic passivity of MRF-based actuators are

important characteristics for haptic interfaces. This provides a strong motivation for de-

veloping small-scale MRF-based actuators as lightweight and compact actuating systems.

Specifically, such actuators are well suited for haptic devices which are required to provide

high-torque capacity, while having better stability and transparency. Our preliminary stud-

ies on a small-scale armature-based clutch supported this claim. In the next chapter, the

development and validation of the prototype small-scale high-torque MRF-based clutch

is reported. This actuator will then be used in a lightweight multi-DoF haptic interface

with a PA-DASA configuration for a specific medical application, as will be discussed in

Chapter 5.
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Chapter 4

Development, Modeling, Control, and
Validation of the Prototype Clutch

In previous chapters, the potential benefits of Magneto-Rheological Fluid (MRF) based ac-

tuators to the field of haptics were studied. A novel design of a small-scale MRF-based

clutch, suitable for haptic applications, was proposed in Chapter 3. This chapter reports

on the development and experimental validation of the proposed MRF-based clutch. In

addition, a closed-loop torque control strategy is presented. The feedback signal used in

this control scheme comes from the magnetic field acquired from Hall sensors within the

MRF-based clutch. The controller uses this feedback signal to compensate for the nonlin-

ear behavior of the clutch using an estimated model, based on Artificial Neural Networks

(ANNs). The performance of the developed design and the effectiveness of the proposed

modeling and control techniques are experimentally validated. The results clearly demon-

strate that the clutch shows great potential for use in a multiple degrees-of-freedom (DoF)

haptic interface for a class of medical applications requiring accurate, highly transparent,

and stable force representation in a teleoperation procedure.

This chapter contains material included in the paper ”Magneto-Rheological Actuators for Haptic De-
vices: Design, Modeling, Control, and Validation of a Prototype Clutch”, submitted to the IEEE International
Conference on Robotics and Automation, Seattle WA, May 26-30, 2015.
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4.1 Introduction

Force and tactile feedback can be used to simulate interaction with remote or virtual en-

vironments during a teleoperation procedure. Such feedback enables the user to adjust

the force control actions to ensure accuracy and safety of the operation. The actuators

and instruments used in designing a haptic interface play an important role with regard

to the quality of force feedback (known as system transparency), as well as stability of

the system [1]. This adds to the complexity of haptic interface design. Actuators based

on Magneto-Rheological Fluids (MRFs) have been proposed as an alternative to electrical

motors for use in haptic devices [2]. It has been demonstrated that the superior charac-

teristics of MRF-based actuators in comparison with active actuators enables the design

of a more transparent and stable haptic interface, as shown in our previous chapters. This

claim was experimentally validated on a large-scale prototype MRF-based haptic system,

by taking advantage of the virtual wall benchmark [3, 4]. The results of these experiments

demonstrated the desirable performance of such actuators when used in a haptic device.

Subsequently, a new design for a small-scale MRF-based clutch, called an armature-based

design, which is suitable for a multi-DoF medical haptic interface was proposed in the pre-

vious chapter. Our preliminary studies on the small-scale armature-based clutch supported

the claim that such actuators are well suited for haptic devices.

This chapter reports on the development and construction of four prototype MRF-based

clutches based on the proposed design. The dimensions and electromechanical specifica-

tions of the developed clutches are provided. The contribution of the current work to the

state of the art is discussed by comparing the performance factors with both conventional

electrical motors and MRF-based actuators reported for haptic applications. It is shown that

the proposed design provides a feasible alternative for use in a haptic interface for medical

applications, especially in terms of torque-to-size ratio. In order to efficiently and accu-
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rately control the torque of the system, which is essential for transparent haptic feedback, a

control scheme based on an new nonlinear model is proposed. This model takes advantage

of an ANN, which is trained by a set of pre-recorded experiments, to predict the hysteretic

nonlinear behavior of the system. This model is then used to provide an estimated value of

the output torque as the controller feedback, with no need for any external force/torque sen-

sor. The performance of the MRF-based clutch, as well as, the efficiency of the proposed

modeling and control techniques are experimentally validated. The results demonstrates

the potential of the proposed design for use in haptic devices for a class of medical applica-

tions. The medical applications considered include needle-based interventions, soft-tissue

palpation, and surgical training and skills assessment.

4.2 Development of Four Prototype Small-Scale Clutches

4.2.1 Design Concept: Review

There are two main approaches to the design of MRF-based clutches reported in the lit-

erature, namely multiple-disk and drum-based designs [5]. These designs takes advantage

of a large area of contact and strong magnetic field, respectively, which contribute to their

torque generation range. However, when made in small-scale, the decrease in these factors

drastically degrades the performance of the system and makes them unsuitable for haptic

applications. In the previous chapter, a new design – called armature-based – was pro-

posed to improve the performance of the disk-based and drum-based approach by increas-

ing the effective MRF volume and the area of contact as well as improving the efficiency

of magnetic field usage. Numerical analysis of the proposed design, given in Chapter 3,

demonstrated the superiority of this design over disk- and drum-based systems, as well as

conventional servo systems.
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4.2.2 Final Design

Fig. 4.1(a) shows the final version of a single unit of an armature-based clutch. Belt pulleys

are mounted on the casing cap to deliver the motor driving motion to the outer casing. A

capstan pulley is also implemented at the armature, which enables the transmission of the

generated torque to a haptic interface joint. Four precision ball bearings are used inside

the caps, which enable disengaged and free motion of belt pulleys and outer casing on the

armature. The design takes advantage of a slip ring to provide current to the armature coil,

as well as readings from the Hall sensors.

Mounted

Bearing

Belt Pulley Outer Casing

Casing Cap

Slip Ring

Capstan

Pulley

Precision

Ball Bearing (a)

Armature

Precision

Ball Bearing

Spacer Unit

Ring Seal Keyhole

For Wires

Hall Sensors

(b)

Figure 4.1: (a) Final version of the armature-based clutch and (b) the internal view
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Fig. 4.1(b) depicts the internal view of the same unit. A keyhole is placed on the armature

shaft for routing the wires from the coils and Hall sensors to the slip ring. The proper

sealing of the clutch to avoid any fluid leakage is an important issue. The heating effect of

the wires, which can increase the fluid pressure, adds to the importance of proper sealing

in the clutch. O-rings are used to seal the gap between the outer casing and the caps.

This method has proven effective in previous designs. The main challenge is in sealing

the bearing that is placed between the armature shaft and the casing caps. If any particle

leaks into the balls of the bearing, it can cause friction and even jamming in the bearing.

Shielded bearings can be implemented to decrease the chance of leakage; however, based

on previous experience, this solution was found to help but is not sufficient. To this end,

stretch-fit rotary-shaft oil seals, placed on the armature shaft, should be used to protect the

bearing. However, this adds to the friction of the system.

4.2.3 Development and Construction

A wire Electrical Discharge Machining (EDM) system was used to construct the armature

of the clutch (Fig. 4.2(a)). Since the gap between the armature and the outer casing is very

small, the machining tolerance plays a crucial role in the outcome. As a result, the highest

tolerance on EDM was used to construct the armature.

The armature was then coiled with a AWG (American Wire Gauge) 28 wire (Fig. 4.2(b)).

Insulating sheets were used to insulate the surface of the armature from the wires. In

addition, it is crucial that the armature coil be insulated from the MRF. This is due to the

fact that, in case of exposure, the particles inside the fluid will mostly accumulate inside

the gaps between the wires, where the magnetic field is very large. This will reduce the

concentration of the particles over the poles which contributes to the torque capacity of
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(a) (b)

(c) (d)

(e) (f)

Figure 4.2: (a) Machined and (b) coiled armature of the system. (c) Silicon molding method

used for (d) insulating the coil of the armature. (e) Location of one of the Hall sensors on

the pole and routing of the wires through the keyhole. (f) Filling the gap between armature

and outer casing with MRF.
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the system. To this end, urethane rubber polymer [6] was used to insulate the wire. This

material consists of a liquid adhesive and liquid rubber, which when mixed, after a certain

period of time (called pot time), starts to harden and eventually turns into solid rubber. A

customized 3-Dimensional (3D) printed mold, with an inner diameter equal to the outer

diameter of the armature was used for this purpose. The polymer mixture was poured

inside the mold (Fig. 4.2(c)) and after a cure time of 20 hours, the coils were insulated by

the created polymer cover as shown in Fig. 4.2(d). This cover is removable and provides

adequate sealing of the wires from the MRF. The Hall sensors and the required filtering

circuits were also attached to the pole of the armature, and an epoxy adhesive material was

used to insulate the wires (Fig. 4.2(e)). Next, the finished armature was placed inside the

outer casing and MRF was inserted in the gap between the two surfaces (Fig. 4.2(f)). Air

vacuum was used to remove any air from inside the fluid. The end result, after attaching the

caps, pulleys, and slip rings is shown in Fig. 4.3. Four prototypes of the proposed design

were constructed in our lab with the goal of developing a multi-DoF haptic interface for

medical application, as will be discussed in the next chapter.

REMARK 5. It should be noted that the proposed clutch is only capable of providing uni-

Figure 4.3: The developed armature-based MRF clutch
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directional motion. The expansion of the proposed design into a multi-DoF haptic system,

for medical applications, which can create bi-directional forces will be performed through

a distributed antagonistic configuration in Chapter 5. In addition, the antagonistic use of

MRF-based clutches can alleviate the problem of friction, due to the sealing of the clutch,

to a great extent. The results of this study will be reported in Chapter 5.

REMARK 6. The electrical current in the wound armature can generate thermal energy in

the clutch. MR fluids have a typical operating temperature range of -40 to 150oC. However

their behavior might change as a result of temperature variation. The outer casing of the

clutch (made of steel), which has a large area of contact with air, can act as a heat sink. This

can moderate the temperature deviations. Fins can be added to the surface of the casing

to increase the area for thermal exchange. Since temperature-dependent model variation

in MRF characteristics is very moderate [7], the integration of temperature sensors in the

system will be postponed to the second generation of the device.

4.3 Figures of Merit

In the following sections, the dimensions and mechanical characteristics of the designed

clutches are provided. In addition, an evaluation of the torque capacity and bandwidth of

the system are also given. In order to determine the required outer diameter and length of

the clutch, a desired torque range of 0-1.5Nm was considered and simulations were used.

This torque range is suitable for the medical applications of interest to our group. Knowing

these values, by taking advantage of the constrained optimization method reported in the

previous chapter, the rest of the dimensions were obtained. These dimensions are shown in

Table 4.1. The symbolic dimensions of the outer casing and a single pole of the armature-

based clutch were shown in Fig. 3.3 in the previous chapter. The masses of all parts in
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the clutch are also given in Table 4.2. As can be seen, a major part of the total mass is

contributed by the outer casing. The large thickness of this part was due to the machin-

ing restrictions in making the O-ring groove and holes for the cap screws, and not due

to limitations in the magnetic field strength. Hence, by using better machining tools, the

thickness of the outer casing, and subsequently its mass, can be reduced. Nevertheless,

since the outer casing and armature are decoupled through bearings, the user interaction is

mostly with the armature of the clutch, which is very light. This fact helps to improve the

transparency of the haptic sensation.

Table 4.1: MR Clutch Dimensions and Specifications

Parameter Symbol Value

Length of the Clutch Lc 60.0 mm

Outer Radius of Outer Casing Rc1 18.0 mm

Inner Radius of Outer Casing Rc2 14.0 mm

Outer Radius of Armature Ra1 13.0 mm

Inner Radius of Armature Ra2 12.0 mm

Radius of Armature Shaft R
sh

5.0 mm

Thickness of Armature Pole Wp 2.5 mm

Thickness of MRF Gap WMR 1.0 mm

Current Rating of Coil imax 1.4 A

Arc of the Armature Tooth θp 30.0o

Number of Coil Turns on Each pole Nw 110

Number of Armature Poles Np 6
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Table 4.2: MR Clutch Mass Specifications

Part (Quantity) Mass

Armature without coil and Rubber (1) 115 gr

Armature with coil and Rubber (1) 128 gr

Outer Casing (1) 253 gr

Casing Caps (2) 27 gr

Belt Pulley (2) 63 gr

MR Fluid (12 ml) 32 gr

Seals, Screws, etc. 5 gr

Total Mass of Clutch 598 gr

4.4 Comparison with Conventional Electrical Motors

Other important factors in the stability and transparency of a haptic system are torque ca-

pacity, output inertia, and bandwidth of the system. Table 4.3 provides the values of these

parameters for the designed system. The experiments used to obtain these values are dis-

cussed in Section 4.7. In addition to the information on the MRF-based clutch, the values of

the parameters for three well-known electrical motors of commensurate size are also given.

One should note that the values mentioned for the electrical motors are only true when they

are used with no gear reduction. In fact, the inertia, bandwidth, and mass of these sys-

tems will degrade when used with a gearbox, which is essential for achieving the desirable

torque range. The developed MRF-based clutch requires no gear reduction, which is one of

its main advantages. Nevertheless, the results show that, even without gear reduction, the

designed MRF-based actuator have comparable and in many cases better characteristics in

comparison to electrical motors. By considering this in addition to the effect of MRF-based
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Table 4.3: MR Clutch Electromechanical Specifications and Comparison

MRF Maxon Parker Anaheim

Parameter Clutch EC-M40 BE164Z BDR-44

Nominal Torque [Nm] 1.1 0.21 0.38 0.09

Stall Torque [Nm] 1.5 0.83 1.15 0.73

Output Inertia [gr.cm2] 427 404 448 -

Mechanical Bandwidth [Hz] 30 34 32 40

Mass [gr] 598 720 570 340

actuators on the stability of the system, a conclusion can be drawn that this system has great

potential to be used in a haptic interface, as an alternative to electrical motors.

4.5 Comparison with Conventional Rheological Actuators

There have been several Magneto- and Electro-Rheological based actuators developed

specifically for haptic applications. Table 4.4 summarizes the size and torque capacity

of some of these. As can be seen, the developed armature-based design has one of the best

torque-to-size ratios. The proposed system not only has an acceptable range of torque suit-

able for medical applications, but is also small enough to be employed in a medium-sized

haptic interface. The other information for these clutches, such as inertia and mass, were

mainly missing, and hence was not considered in this comparison. Nevertheless, a thor-

ough review on this subject was given in the previous chapter. In addition, one should not

that MRF-based linear dampers have also been used in haptic application. However, due to

the large zero-current force of such systems, they are not suitable for medical applications

and are not reviewed in this section.
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Table 4.4: Clutch Electromechanical Specifications and Comparison (∅ = diameter size)

Research Type Dimensions Torque

Current Work Armature ∅3.6×6cm 1.5 Nm

Liu et al. [8] Disk ∅15cm 0.9 Nm

Melli-Huber et al. [9] Disk ∅4.3×2cm 0.7 Nm

Furusho et al [10] Disk ∅20cm 2.0 Nm

Yamaguchi et al. [11] Disk ∅17cm 10 Nm

Blake et al [12] Disk ∅2.5×1.4cm 0.2 Nm

Nguyen et al. [5, 13] Disk ∅10cm 10 Nm

Ahmadkhanlou et al. [14] Drum ∅8×10cm 1.5 Nm

4.6 Modeling And Control

MRF-based actuators suffer from nonlinear hysteretic relationships between the input cur-

rent and output torque. For a single-input single-output system, hysteresis is the presence

of a non-degenerate input-output closed curve as the frequency of excitation tends toward

a DC signal [15]. Although this nonlinearity is less serious than in the case of pneumatic

or hydraulic systems, it causes inaccuracy in the output response of the actuator, as well as,

instability in the closed-loop system [16]. Therefore, it is essential to study and model the

current-torque relationship for MRF-based actuators for reliable control and actuation and

for delivering high-fidelity force/torque control in haptic interfaces utilizing MRF-based

actuators.

Two main approaches to modeling of hysteretic systems are reported, namely a) physics-

based modeling, and (b) phenomenological modeling. The first category is structured

around the physical principles of magnetics. Jiles model [17] and Hodgdonas model [18]
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are two such models used for MRF-based actuators. However the application of such mod-

els has been mainly restricted to off-line simulation and actuator design and rarely has been

used for control purposes. Preisach [19, 20], Prandtl-Ishlinskii [21], and Krasnoselskii-

Pokrovskii [22] models are among the second category of modeling methods. These

models are mainly successful in predicting magnetic hysteresis. However, implementa-

tion problems associated with such methods limit their use in closed-loop controllers [23].

The implementation of non-model based controllers for MRF-based system have also been

reported in the literature [24]. However, their poor results demonstrate the crucial need

for model-based controllers for MRF-based actuators. To this end, several efforts were

made by our group to develop an efficient model-based control scheme. A novel non-

linear adaptive observer that relates the internal magnetic field to the applied current was

introduced in [25]. This model facilitates accurate control of the actuator using its input

current. In another study [26], a simple PID controller was used for controlling an MRF-

based clutch. As its feedback signal, the controller took advantage of an estimated value of

the output torque obtained using an efficient model, which was a combination of Bingham

Visco-Plastic model [23, 27] (relating magnetic field to shear stress), a geometric model

(relating shear stress to static torque), and a dynamic model (relating static torque to dy-

namic torque). In this way, the input-output relationship of the MRF-based clutch was

linearized which allowed an efficient closed-loop control of the system. In both previous

works, since they were large-scale systems, the overall hysteresis in MRF-based actuators

could be as small as 5% of the total torque range. However, in the current work, due to

the small range of torque capacity, the hysteresis can result in more serious issues in terms

of accuracy. In what follows, the design of a closed-loop control for the designed actuator

is given. In this method, an ANN is used to model the hysteretic behavior of the system.

As mentioned, Hall sensors are used to measure the magnetic field inside the fluid. This

measurement is then used as the input of the ANN to estimate the output torque of the
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clutch. This estimated value is then used as feedback in the control loop. The main advan-

tage of the proposed controller is that it eliminates the need for any additional force/torque

sensors, which results in significant advantages in terms of cost reduction and performance

improvement, thanks to the unique properties of MR fluids.

4.6.1 ANN-Based Modeling Method

Universal function approximators (e.g., ANNs and fuzzy logic systems) have been exten-

sively used in robust control of nonlinear systems [28–31]. This interest is due to their high

capability in learning and adaptation [28]. The proposed solution for modeling the non-

linear behavior of the clutch is based on training of an ANN based on a set pre-recorded

measurement of a torque sensor and Hall sensors, when known current signals are applied

to the system. By learning different patterns, the ANN can then predict the output torque in

a real-time fashion, only based on the embedded Hall sensors’ feedback. The architecture

of the ANN can play an important role in the results of the prediction. Fig. 4.4 shows an

empirical architecture of a feed-forward ANN that comprises 5 input neurons, 6 hidden

neurons, and 1 output neuron. This topology was obtained through trial and error. The hid-

den layer has a tan-sigmoid transfer function, while the output layer uses a linear transfer

function. The inputs of the network consist of the last four sample of the magnetic field

reading from the Hall sensor (i.e., B(t − nTs), n = 0, ..., 3, and Ts is the sampling time),

as well as, the last estimated output torque Te(t− Ts). The output is the estimated value of

the output torque Te(t). The number of Hall sensor reading samples (i.e., n in B(t− nTs))

used in ANN can have a significant effect on the accuracy of the prediction. While a large

number of samples (i.e., n > 3) may result in more accurate prediction, it places the predic-

tion process at the disadvantage of computational complexity and difficulty in predicting

sudden changes. Through trial and error, we came to the conclusion that n = 3 is a good
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Figure 4.4: The architecture of the ANN used for estimating output torque based on Hall

sensor readings.

choice for this application. Another point to note is the use of torque estimation history (i.e.,

Te(t − Ts)) as an input. During training of the network, more samples of torque estima-

tion history considerably decreased the prediction error, particularly in cases that involved

sudden torque changes. However, during evaluation, the accumulative error in the system,

caused by the large number of samples, resulted in failure of prediction. In our study, it

was decided to use just one sample of the torque estimation history. In order to obtain a

training data set for the network, the MRF-based clutch was connected to a torque sensor

(more details on the experimental setup can be found in Section 4.7). Next, several current

inputs were applied to the clutch and the output of the Hall (magnetic field sensing) and

torque sensors were recorded. In order to enable the network to predict the output torque in

any scenario, several different current patterns were applied, which included the following

signals; chirp, step, sinusoidal (with different magnitudes and frequencies), damped sinu-

soidal, multi-sinusoidal, etc. This set of data was then used to train the ANN using the

Levenberg-Marquardt algorithm [32]. In this algorithm, the energy function of the error

was used as an indicator of the performance. The effectiveness of the proposed modeling

method is shown in Section 4.7.
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4.6.2 Torque Control Scheme

The control scheme used in this chapter is the same as the one developed in our research

group and reported in [25, 33, 34]. This method has been examined rigorously and its

effectiveness has been validated. Fig. 4.5 depicts this closed-loop control configuration.

In this structure, a simple PID controller provides the control current for a desired torque

value. The PID controller uses the error between the estimated value of the output torque

with its desired value as the input signal. The main difference between this work and our

previous work, is that the ANN, proposed in Section 4.6.1, is used to estimate the output

torque. The effectiveness of the overall control method is shown in Section 4.7.

MRF-Based

Clutch

Hall

Sensor

PID Controller

ANN Model

Desired

Torque
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Estimated

Torque

Magnetic

Field

Current
Output

Torque

Figure 4.5: Closed-loop control configuration using embedded Hall sensors and the pro-

posed ANN model

4.7 Results

This section presents the result of experimental validation of the designed MRF-based

clutch, the modeling method, and the control scheme discussed in the previous sections.

4.7.1 Experimental Setup

Fig. 4.6 depicts the experimental setup used for validating the performance of the devel-

oped MRF-based clutches. A driver motor (Maxon Brush-less EC-60) provides a constant
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Figure 4.6: Experimental Setup

input torque to the outer casing of all clutches through power transmission belts. The arma-

ture shafts are equipped with capstan pulleys which can transmit power to an ATI Nano17

Force/Torque Sensor through a system of cables. Each clutch is connected to an individual

current driver which controls the current of the coil, and subsequently the magnetic field in-

side the clutch, at 1KHz. A data acquisition card is employed to provide the current drivers

with the reference current, as well as, to read the output of the ATI and Hall sensors.

Note that this setup is designed to be used as a prototype multi-DoF haptic interface for

medical applications (Chapter 5). However, at this stage of the work, each clutch was

tested individually. To this end, the ATI sensor was connected to one clutch at a time while

the tests were performed.

4.7.2 Frequency Response

The frequency response is examined by measuring the torque response to a sinusoidal chirp

current signal, which sweeps from 0.5Hz to 60Hz. Although this system is nonlinear, a

sinusoidal input does result in a sinusoidal output. Fig. 4.7 demonstrates the frequency
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response of the system. The bandwidth is measured to be approximately 30 Hz.
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Figure 4.7: Frequency response of the system.

4.7.3 Validation of the Modeling Method

In order to validate the modeling method introduced in Section 4.6.1, a set of different

current patterns were applied to the MRF-based clutch. The actual output torque was

measured using the ATI Nano17 sensor. In addition, the ANN-based model was used

to estimate the output torque. These two values were then compared. Furthermore, to

study the improvement of the modeling technique over the conventional geometric mod-

eling method [14, 19, 26], the estimated torque using this model has also been included

in the comparison of the results. This model is a combination of the Bingham-Visco plas-

tic model (which relates the magnetic field to the shear stress), and the geometrical and

physical relationships in the system (which relates the shear stress to output torque).

In order to study the accuracy of the ANN-based model in predicting the nonlinear behavior

of the system, two sinusoidal signals with frequencies of 1Hz and 4Hz were applied to the
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system. Fig. 4.8 presents the magnetic-field-to-torque and current-to-torque relationships

in the system. As can be seen, the proposed model is highly capable of predicting the

hysteretic behavior of the system, while the geometric method is less successful due to the

assumed linear relationship between the magnetic field and torque. Next, to evaluate the

model in predicting the inner loops of the hysteretic behavior, a damped sinusoidal signal

was applied. Fig. 4.9 presents the result. Once more, there is strong agreement between

the actual measurement and the ANN-based prediction which demonstrates the efficiency

of the ANN-based model.

In order to further validate the modeling method, a set of different current patterns were ap-

plied to the MRF-based clutch. Fig. 4.10 shows the results of several of these tests. As can

be seen, the ANN-based model is very successful in predicting the output torque. However,

the geometric model has larger error, specifically in case of high frequency changes in the
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Figure 4.8: Modeling of hysteretic behavior of the system in response to sinusoidal currents

of 1Hz (top row) and 4Hz (bottom row).
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Figure 4.9: Modeling of the inner loops of the hysteresis

signal, which is usually more important for control purposes. This is due to the fact that

in this method, a one-to-one relationship is considered between the magnetic field and the

torque of the system. This assumption is acceptable in case of systems with a large range

of torque; however, in the current application, hysteresis comprises a large portion of the

signal and this assumption does not hold. Hence, based on the results, the proposed ANN-

model demonstrates great potential for use in a control scheme in small-scale applications.

4.7.4 Evaluation of the Control Technique

Next the performance of the control scheme introduced in Section 4.6.2 was evaluated. In

these experiments, a PI controller was used to control the output torque of the clutch (P=9

and I=0.1, obtained manually). The Hall sensor measurements in addition to the ANN-

based torque estimator were used as the feedback signal for the PID controller (Fig. 4.5).

The ATI sensor was also used to evaluate the performance of the combination of the model-

ing and control techniques. It should be noted that this sensor was only used for validation

of the results, and it was not used to provide feedback signal. Fig. 4.11 shows the results
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Figure 4.10: Results for the validation of the modeling technique by applying (a) chirp, (b)

multi-sinusoidal, (c) damped sinusoidal, (d) cropped sinusoidal, (e) sinusoidal (1Hz), (f)

sinusoidal (4Hz), (g and h)step-sequence current, and (i) sawtooth signals.
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of several experiments. As can be seen, the controller has an acceptable performance in

tracking these desired torque signals. The major advantage of this control approach is that

there is no need for an external force/torque sensor, which is a significant improvement

in the state of the art. While our proposed technique does not outperform conventional

force/torque control schemes (at least by a significant margin) in terms of the accuracy of

the delivered torque, it provides a much more viable alternative to these schemes [26].

4.8 Concluding Remarks

The design and development of a novel small-scale MRF-based clutch was reported in

this chapter. This actuator is designed for use in a haptic device for medical applications.

Electromechanical specifications of the system were given and compared to conventional

small-scale electrical motors and existing MRF-based actuators designed for haptic appli-

cations. It was demonstrated that the proposed system shows a significant improvement

over the state of the art, especially in terms of torque-to-size ratio. A modeling and control

scheme based on artificial neural networks and embedded Hall sensors were proposed and

it was shown through experimental results that they present a very accurate and efficient

means of providing accurate and high fidelity torque delivery which is essential for haptic

devices in certain medical applications. In addition, the control scheme does not require

any external force/torque sensor which contributes to lower cost and greater simplicity for

the system. The extension of the developed clutches into a multi-DoF haptic interface will

be discussed in the next chapter.
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Figure 4.11: Results for the validation of the control method by applying (a) damped sinu-

soidal, (b and c) multi-sinusoidal, sinusoidal of (d) 0.5Hz, (e) 2Hz, (f) 5Hz, (g) 10Hz, and

(h and i) step-sequence reference signals.



www.manaraa.com

BIBLIOGRAPHY 101

Bibliography
[1] D. Lawrence, “Stability and transparency in bilateral teleoperation,” IEEE Transac-

tions on Robotics and Automation, vol. 9, pp. 624 –637, Oct 1993.

[2] A. Bicchi, M. Raugi, R. Rizzo, and N. Sgambelluri, “Analysis and design of an elec-
tromagnetic system for the characterization of Magneto-Rheological fluids for haptic
interfaces,” IEEE Transactions on Magnetics, vol. 41, pp. 1876 – 1879, may 2005.

[3] J. Abbott and A. Okamura, “Effects of position quantization and sampling rate on
virtual-wall passivity,” IEEE Transactions on Robotics, vol. 21-5, pp. 952–64, 2005.

[4] M. Lin and M. Otaduy, Haptic Rendering: Foundations, Algorithms and Applications.
A K Peters, 2008.

[5] P. Nguyen and B. Choi, “Selection of Magneto-Rheological brake types via optimal
design considering maximum torque and constrained volume,” Smart Materials and
Structures, vol. 21-1, pp. 1–12, Dec 2012.

[6] Smooth-On Co., Easton PA, VytaFlex Series - Liquid Urethane Rubbers, 011011-
JR ed., 2011.

[7] A. Shafer and M. Kermani, “On the feasibility and suitability of MR fluid clutches in
human-friendly manipulators,” IEEE/ASME Transactions on Mechatronics, vol. 16-6,
pp. 1073 – 82, Dec 2010.

[8] B. Liu, W. Li, P. Kosasih, and X. Zhang, “Development of an MR-brake-based haptic
device,” Smart Materials and Structures, vol. 15, pp. 1960–1966, 2006.

[9] J. Melli-Huber, B. Weinberg, A. Fisch, J. Nikitczuk, C. Mavroidis, and C. Wampler,
“Electro-Rheological fluidic actuators for haptic vehicular instrument controls,” in
Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems,
2003.

[10] J. Furusho, M. Sakaguchi, N. Takesue, and K. Koyanagi, “Development of ER brake
and its application to passive force display,” Journal of Intelligent Material Systems
and Structures, vol. 13, pp. 425–429, 2002.

[11] Y. Yamaguchi, S. Furusho, S. Kimura, and K. Koyanagi, “Development of high-
perforemance MR actuator and its application to 2D force display,” International
Journal of Modern Physics B, vol. 19, pp. 1485–1491, 2005.

[12] J. Blake and H. Gurocak, “Haptic glove with MR brakes for virtual reality,”
IEEE/ASME Transactions on Mechatronics, vol. 14, pp. 606 –615, oct. 2009.



www.manaraa.com

BIBLIOGRAPHY 102

[13] P. Nguyen, V. Lang, N. Nguyen, and B. Choi, “Geometric optimal design of a
Magneto-Rheological brake considering different shapes for the brake envelope,”
Smart Materials and Structures, vol. 23, pp. 1–11, Jan 2013.

[14] F. Ahmadkhanlou, G. Washington, and S. Bechtel, “Modeling and control of sin-
gle and two degree of freedom Magneto-Rheological fluid-based haptic systems for
telerobotic surgery,” Journal of Intelligent Material Systems and Structures, vol. 20,
pp. 1171–86, May 2009.

[15] J. Oh, B. Drincic, and D. Bernstein, “Nonlinear feedback models of hysteresis,” IEEE
Control Systems Magazine, vol. 29, pp. 100–119, 2009.

[16] H. Khalil, Nonlinear Systems. Prentice Hall, 2002.

[17] C. Jedryczka, P. Sujka, and W. Szelag, “The influence of magnetic hysteresis on
Magneto-Rheological fluid clutch operation,” The International Journal for Compu-
tation and Mathematics in Electrical and Electronic Engineering, vol. 28, pp. 711–21,
Oct 2009.

[18] J. An and D. Kwon, “Modeling of a Magneto-Rheological actuator including mag-
netic hysteresis,” Journal of Intelligent Materials System Structures, vol. 14, pp. 541–
550, 2003.

[19] P. Yadmellat and M. Kermani, “Output torque modeling of a MR based actuator,” in
18th IFAC World Congress, 2011.

[20] J. Jayender, R. Patel, S. Nikumb, and M. Ostojic, “Modeling and control of shape
memory alloy actuators,” IEEE Transactions on Control Systems Technology, vol. 16,
pp. 279–287, March 2008.

[21] A. Vinstin, Differential models of hysteresis. Springer Verlag, 1994.

[22] M. Krasnoselskii and A. Pokrovskii, Systems with hysteresis. Springer, 1989.

[23] P. Yadmellat and M. Kermani, “Adaptive modeling of a fully hysteretic Magneto-
Rheological clutch,” in IEEE International Conference on Robotics and Automation,
2012.

[24] J. Deur, Z. Herold, and M. Kostelac, “Modeling of electromagnetic circuit of a
Magneto-Rheological fluid clutch,” in IEEE Control Applications, pp. 113–118, July
2009.

[25] P. Yadmellat and M. Kermani, “Adaptive modeling of a Magneto-Rheological clutch,”
IEEE/ASME Transactions on Mechatronics, vol. 19, pp. 1716–1723, Oct 2014.



www.manaraa.com

BIBLIOGRAPHY 103

[26] W. Li, P. Yadmellat, and M. Kermani, “Linearized torque actuation using FPGA-
controlled Magneto-Rheological actuators,” IEEE/ASME Transactions on Mechatron-
ics, vol. PP, pp. 1–9, May 2014.

[27] M. Jolly, J. Bender, and J. Carlson, “Properties and applications of commercial
Magneto-Rheological fluids,” in SPIE International Symposium on Smart Structures
and Materials, 1998.

[28] M. Chen, S. Ge, and B. Voon Ee How, “Robust adaptive neural network control for a
class of uncertain MIMO nonlinear systems with input nonlinearities,” IEEE Trans-
actions on Neural Networks, vol. 21, pp. 796–812, May 2010.

[29] Y. Liu, C. L. P. Chen, G.-X. Wen, and S. Tong, “Adaptive neural output feedback
tracking control for a class of uncertain discrete-time nonlinear systems,” IEEE Trans-
actions on Neural Networks, vol. 22, pp. 1162–1167, July 2011.

[30] B. Subudhi and D. Jena, “A differential evolution based neural network approach to
nonlinear system identification,” Applied Soft Computing, vol. 11, no. 1, pp. 861 –
871, 2011.

[31] C. Lin, A. Ting, C. Hsu, and C. Chung, “Adaptive control for MIMO uncertain nonlin-
ear systems using recurrent wavelet neural network,” International Journal of Neural
Systems, vol. 22, no. 01, pp. 37–50, 2012.

[32] S. Haykin, Neural Networks and Learning Machines. Pearson Education Inc., 3rd ed.,
2009.

[33] P. Yadmellat, A. Shafer, and M. Kermani, “Design and development of a single-motor,
two-dof, safe manipulator,” IEEE/ASME Transactions on Mechatronics, Accepted
2013.

[34] W. Li, P. Yadmellat, and M. Kermani, “Linear torque actuation using FPGA-
controlled Magneto-Rheological actuators,” in International Conference on Robotics
and Automation, 2014.



www.manaraa.com

104

Chapter 5

Development and Evaluation of the
Prototype Haptic Interface

This chapter reports on the design, construction, and evaluation of a prototype two degree-

of-freedom (DoF) haptic interface, which takes advantage of Magneto-Rheological Fluid

(MRF), based clutches for actuation. The design of small-scale clutches were discussed in

Chapter 3, and their development and evaluation was reported in Chapter 4. A distributed

antagonistic configuration is used to develop the 2-DoF haptic interface based on these

actuators, for a class of medical applications. This device is incorporated in a master-

slave teleoperation setup that is used for medical percutaneous and palpation interventions.

Evaluation of the performance of the haptic interface in this setup show a great potential

of MRF-based actuators to for integration in haptic devices for medical interventions that

require reliable, safe, accurate, transparent, and stable force representation.

This chapter contains material included in the papers (1) ”Design and Evaluation of a Prototype Two-
DoF Haptic Interface for Medical Applications based on Magneto-Rheological Actuation”, submitted to the
IEEE International Conference on Robotics and Automation, Seattle WA, May 26-30, 2015, and (2) ”De-
sign of a Haptic Interface for Medical Applications using MRF-based Actuators”, submitted to IEEE/ASME
Transactions on Mechatronics, 2014.
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5.1 Introduction
Since its inception, haptics has attracted a great amount of interest from different sectors of

the robotics industry. The force and tactile feedback provided by haptic devices can enable

the user to adjust the force control actions to ensure accuracy and safety of the operation.

This significantly improved the quality of telerobotic tasks. In recent years, with the rapid

growth in applications of minimally invasive medical interventions, the integration of hap-

tics into such applications has been identified as a high-priority objective in major medical

robotics roadmaps [1, 2]. Motivated by in-depth research, it is not difficult to imagine the

benefits of providing a clinician using robotics-based systems with the feeling of being di-

rectly in contact with tissues and organs. Such sensation can improve the intuitiveness of

minimally invasive interventions. In addition, it enables the clinicians to control the qual-

ity of tasks during procedures (e.g., proper suture knot tying, achieving adequate contact

during cardiac ablation) and to avoid causing any damage to tissue by exerting too much

force [3]. However, the introduction of haptics in minimally invasive applications brings to

light a number of safety concerns particularly among standardization bodies, robotic man-

ufacturers, and researchers [4, 5]. This is to be expected since the fundamental premise

behind existing safety norms is complete reliability and safety of medical devices. How-

ever, the issue of stability of haptics-enabled telerobotic systems hampered the introduction

of haptics into medical environments [2]. Due to the susceptibility of bi-lateral teleopera-

tion systems to time delays, there is a possibility that such systems can become unstable as

a result of the reflected slave force and induced master motion mechanism [6]. Thus, much

research has focused on developing reliable control techniques for haptic applications. To

this end, the use of passivity-based and small-gain approaches have been reported in [7, 8].

However, the conservative nature of such methods results in degraded transparency, which

calls for a long and costly amount of training for the staff to be able to efficiently use the

system.
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Another body of work has focused on addressing this issue through redesigning the ac-

tuation mechanisms in haptic interfaces. The use of electrical motors in haptic devices,

especially for medical applications, has proved to be challenging for several reasons. The

poor dynamics of electrical motors, imposed by the need for gear reduction, can signifi-

cantly reduce the transparency of the system by increasing the damping, inertia, and fric-

tion of the haptic device [9]. This is highly problematic in medical applications that require

high-fidelity and accurate force reflection. Moreover, their active nature (which may be

exhibited in the form of oscillations and jerks) can result in degradation of stability, which

is unacceptable in medical applications [6, 10]. Actuators based on Magneto-Rheological

fluids have been proposed as an alternative for use in haptic devices [11]. As discussed

in the virtual wall benchmark [12] and use of the small-gain theorem [8], such a charac-

teristic contributes to the stability of a bilateral teleoperation system. These claims were

experimentally studied and validated in the previous chapters. While the application of

MRF-based actuators does not fully address the issue of safety in haptic devices for medi-

cal applications, our promising results motivated us to further investigate their application

in this field. To this end, a small-scale design of an MRF-based clutch, suitable for haptic

applications, was proposed in Chapter 3. Based on this design, four prototype clutches were

developed and validated and the results are provided in Chapter 4. This chapter reports on

the design and development of a prototype two degree-of-freedom (DoF) haptic interface

based on the developed MRF-based clutches. First an overview of existing technologies in

the field of MRF-based haptic interfaces is provided (Section 5.2). A distributed antagonis-

tic configuration is introduced which enables the construction of a 2-DoF haptic interface

based on the actuators (Section 5.3). This device is incorporated in a master-slave teleop-

eration setup that is used for a needle-based percutaneous application (Section 5.5). This

setup takes advantage of a state-of-the-art needle insertion robot developed in our group for

prostate brachytherapy. Our studies on the performance of the prototype haptic interface
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show their significant potential for haptic devices for use in soft-tissue medical applications

that require reliable, accurate, and stable force representation.

5.2 State of the Art

Several haptic devices have been developed based on Magneto-Rheological and Electro-

Rheological Fluids (ERF). In this section some of these studies are reviewed. Only devices

that provide force reflection are considered.

There has been some work on designing MRF-based haptic joysticks. In one such study,

a 2-DoF ERF-based joystick was developed [13]. This device takes advantage of 2 ERF-

based disk-type brakes and a 2-DoF joint, on which the joystick handle is mounted. This

device is capable of generating passive torques in the range Nm. In another design, a 2-

DoF MRF-based joystick was developed for virtual reality applications [14]. This joystick

was constructed of two disc-shaped MRF-based brakes positioned perpendicularly with a

gimbal structure. The joystick provides wide resistive torque in the range 0.5-10 Nm. The

device was used in 2D and pseudo-3D virtual experiments and was shown successful.

Force displays have also been designed based on MRF-based actuation. Furusho et al. [15]

developed a low inertia cylindrical type ERF-based actuator and used these actuators within

a 2-DoF force display in the form of a parallel-link manipulator. This force display is ca-

pable of generating about 2.0 Nm passive torque. Experimental results on a virtual wall

demonstrated the effectiveness and stability of such display in providing passive force feed-

back. Reed et al. [16], proposed a 2-DoF dissipative force display. This device was in the

form of a parallel five-bar linkage actuated by commercial MRF-based brakes. This force

display was tested by using a virtual environment. Preliminary results were promising with

potential benefits for the area of obstacle avoidance. Yamaguchi et al. [17] developed a
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semi-active high-performance 2-DoF MRF-based force display. In this design, 2 DC mo-

tors and four MRF clutches were used. The maximum generated torque is about 10 Nm.

The useful characteristics of the smart actuators makes them suitable candidates to be used

in haptic hand master devices [18, 19]. Winter et al. [20] took advantage of MRF-based

dampers and developed an MRF-based actuated glove. Five MRF-based dampers (weigh-

ing only 0.035 lb) which can exert passive force up to 6 N were placed on the back of the

hand. A novel exoskeleton mechanical power transmission system was designed to trans-

mit the resistive forces of the dampers to the user’s fingertips. Nam et al. [21] developed

an MRF-based glove, called ”Smart Glove”. It took advantage of 5 MRF-based dampers

placed on the wrist, each capable of applying up to 26 N of passive force. A tendon-type

flexible link was designed to connect the fingertips to the MRF actuators. The main draw-

back of the previous two designs is that the employed dampers produce a large amount of

force in the off-state, which degrades transparency of the system. Blake et al. [22], devel-

oped a haptic glove by taking advantage of six MRF-based brakes. The developed brakes

are compact and can apply up to 0.899 Nm of passive torque. The glove weighs about

1.4 lb. The main advantage of this glove is that it only applies 0.005 Nm of torque in the

off-state, which results in higher transparency.

Table 4.4 (in the previous chapter) summarizes the size and torque capacity of some of the

MRF-based actuators developed for haptic applications. Our designed MRF-based clutch

has also been included in this table. Note that only the MRF-based dampers are not con-

sidered in this comparison, due to their large off-state force, which makes them unsuitable

for medical applications. As can be seen, the developed armature-based design has one of

the best torque-to-size ratios. The proposed system not only has an acceptable range of

torque suitable for medical applications, but also is also small enough to be employed in a

medium-sized haptic interface.
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5.3 Design of the Two-DoF Haptic Interface

This section describes the development of the prototype two-DoF haptic interface.

5.3.1 MRF-Based Clutch

The prototype haptic interface takes advantage of four MRF-based clutches as its actuation

mechanism. These actuators have been developed based on armature-based design pro-

posed in the previous chapters. Fig. 5.1 shows one of these actuators. In this design, the

MRF fills the gap between a cylindrical outer casing and an armature, made of ferromag-

netic materials. These two parts are decoupled through the use of ball bearings and both

can rotate freely. To operate the clutch, a driving motor will applies a constant input torque

to the outer casing of the clutch. Belt pulleys are mounted on the caps for this purpose. The

armature is equipped with magnetic coils, which can create an axial magnetic field inside

the MRF gap. In this way by controlling the magnetic field, the viscosity and shear stress of

MRF, and subsequently the share of the input torque that is transferred to the output shaft

can be controlled. Hall sensors are embedded in the system to measure the magnetic field

strength. The output torque can then be delivered to the output link using cables or belts.

A slip ring is used to provide current to the armature coil, as well as readings from the Hall

sensors. The specification of these clutches are given in Table 5.1.

Figure 5.1: The developed MRF-based clutch used for actuation of the haptic interface.
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Table 5.1: Specifications of MRF-Based Clutches

Parameter Value

Length 60 mm

Outer Radius 18 mm

Shaft Radius 5 mm

Maximum Current 1.4 A

Mass 598 gr

Output Inertia 427 gr.cm2

Bandwidth 30 Hz

Maximum Torque 1.5 Nm

5.3.2 Bidirectional Actuation: Antagonistic Configuration

It should be noted that the proposed clutch is only capable of providing unidirectional

motion. In order to achieve bidirectional actuation, an antagonistic configuration is used,

as shown in Fig. 5.2. In this configuration, clutches work in pairs to provide motions in

both directions. The driver motor applies the input torque to both clutches in the same

direction. However, the cable attaching the capstan pulleys is installed in an ∞ shape.

In this way, the output torques of the clutches are applied in opposite directions, which

enables bidirectional actuation of the link through a push-pull cable mechanism. Hence, by

switching between the two clutches, the direction of operation can be changed.

The antagonistic configuration delivers a hidden blessing for the haptic device. Any friction

in the system can degrade the transparency of the system. Different factors can contribute to

the friction of the system. The viscosity of the fluid creates an off-state torque. Any residual

magnetic field in the system can result in a biased shear stress and the user will feel added

friction as a result. Also the seals that are used to avoid leakage of the fluid can create
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large frictions. Although this could be a serious concern, the antagonistic configuration

presented here addresses this problem to a great extent. This is due to the fact that the

created friction forces in a pair of clutches antagonistically connected to a single joint will

have similar magnitude, but in opposite directions. Hence, the friction forces will tend to

cancel each other out. This is a useful property for haptic devices, which require minimal

friction for high transparency.

5.3.3 Multi-DoF System: PA-DASA Configuration

The use of MRF-based clutches in a multi-DoF haptic device can be addressed using

the concept of Pluralized Antagonistic Distributed Active Semi-Active (PA-DASA) actua-

tion [23], which is an expansion of the antagonistic configuration described in the previous

(a)

To

Link
(b)

Figure 5.2: (a) Isometric and (b) front views of the antagonistic configuration for bidirec-

tional actuation.
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section, e.g., Fig. 5.3. In this structure multiple MR clutches can be driven by a single

motor (active actuator), which is located at the base of the haptic interface to keep the link

masses low. The single motor applies a constant unidirectional torque to all sets of clutches

through a system of cables and pulleys. A set of two clutches is employed in an antagonis-

tic configuration to apply torques to each joint through cables and pulleys [23]. The torque

direction and magnitude can then be changed by controlling the magnetic field in the MR

clutch pair, without altering motor direction or torque. This has the benefit of rectifying a

possible dead-zone due to motor direction change. This concept is the key strategy behind

developing the multi-DoF haptic interface. The PA-DASA mechanism is intended to in-

crease the performance of the interface, while offering reduced mass and effective inertia

at all joints over using conventional servo motors [24]. In addition to these benefits, more

cost-effective motors can also be used in lieu of expensive servomotors in PA-DASA con-

figuration, since MR clutches are insensitive to momentary lack of mechanical power [24].

It should be noted that the only control required at the single motor stage is to provide

constant torque. The application of PA-DASA in large-scale two- and three-DoF industrial

Joint 1

Joint 2

Figure 5.3: PA-DASA configuration for bidirectional multi-DoF actuation.
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robots has been assessed in our group and the results has shown the suitability of such a

configuration [24, 25]. Hence, by taking advantage of the small-scale MRF-based clutches

in a PA-DASA configuration, a lightweight and compact multi-DoF haptic interface can be

made.

5.3.4 Two-DoF Prototype Haptic Interface

Based on the PA-DASA configuration, a two-DoF prototype haptic interface has been de-

veloped. The structure of this device is shown in Fig. 5.4. A brushless Maxon EC-60 DC

motor is used to drive the clutches. A 3-DoF planar haptic handle is also constructed using

rapid prototyping. A system of cables and capstan pulleys are used to transmit bidirec-

tional torques from each pair of clutches to first and second joint. The third joint is passive.

Table 5.2 provides the specifications of this device and Fig. 5.5 shows the workspace of

the system. A comparison between the developed prototype device and three off-the-shelf

haptic interfaces are given in Section 5.4.

Maxon DC Motor

Haptic Interface

Figure 5.4: Structure of the multi-DoF haptic interface.
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Table 5.2: Haptic Interface Specifications

Parameter Value

Length of Link 1 100 mm

Length of Link 2 80 mm

Length of Link 3 50 mm

Haptic Box Length 200 mm

Haptic Box Width 170 mm

Haptic Box Height 100 mm

Joint 1 Motion Range 200 deg

Joint 2 Motion Range 190 deg

Maximum Joint Torque 1.5 Nm

Maximum Cartesian Force 10 N

5.3.5 Modeling and Control

Reliable control and actuation is a critical issue in haptic devices for delivering high-fidelity

force/torque feedback, especially in case of medical applications. MRF-based actuators

-0.2 -0.15 -0.1 -0.05 0 0.05 0.1 0.15 0.2
-0.1

-0.05
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Figure 5.5: Workspace of the multi-DoF haptic interface.
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suffer from nonlinear hysteretic relationships between the input current and magnetic field,

as well, as the magnetic field and shear stress (output torque). This nonlinearity can cause

inaccuracy in the output response of the actuator, as well as, instability in the closed-loop

system, which is highly undesirable in practical applications. Therefore, it is essential to

study and model the current-torque relationship for MRF-based actuators. A modeling and

control scheme for such actuators has been proposed in Chapter 4. In this section, this

method is briefly discussed; A simple PID controller provides the control current for a

desired torque value to the coil of the clutch. This controller uses the error between an

estimated value of the output torque with its desired value as the input signal. The main

goal of this control technique is to avoid using any external force/torque sensor [26]. To

this end, an approximator based on an artificial neural network (ANN) is used to predict

and model the output torque of the system (which is used for feedback), just based on the

measurement of the magnetic field strength by the embedded Hall sensors in the clutch.

The ANN is trained based on a set of pre-recorded measurements. The results in Chapter 4

showed the efficient performance of this modeling and control strategy. In the next section,

the performance of this method in controlling an antagonistic pair of clutches is evaluated.

5.4 Comparison to Off-the-Shelf Haptic Interfaces

In this section, specifications of the prototype MRF-based haptic device are compared with

those of three well-known off-the-shelf haptic interfaces, namely Geomatic PHANTOM

Omni [27], Geomatic PHANTOM Desktop [27], and Quanser Haptic Wand [28]. Based

on the findings of [29], several performance measures were considered to compare these

devices. These factors are listed in Table 5.3.

It is evident that, while the developed device has fewer degrees of freedom and comparable
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weight and dimensions to the other devices, it is capable of producing the largest force,

torque, and stiffness. As mentioned in Chapter 4, the weight and size of the device can

be reduced in the next generation of the system through using more appropriate machining

techniques. About 1 kg of the device weight is the weight of the Maxon EC-60 motor

used in the setup for driving the clutches. This motor can be replaced with a lighter and

less powerful one, since the PA-DASA configuration reduces the need for a powerful servo

system (Section 5.3.3).

As will be discussed in the experimental results, the large range of achievable stiffness

(impedance) for the MRF-based device in comparison with other devices, shows the po-

tential of this system for use in a wide range of medical applications, including low force

applications (i.e., soft-tissue manipulation), as well as, high force ones (such as bone mar-

row biopsy, and some orthopedic interventions). However, at the current size, the designed

Table 5.3: Comparison to Off-the-Shelf Haptic Interfaces

Prototype PHANTOM PHANTOM Quanser

Parameter Device Omni Desktop Haptic Wand

DoF (w/ Force Feedback) 2 3 3 5

Height [mm] 100 70 120 350

Footprint [mm] 170×200 143×184 168×203 335×450

Weight [kg] 3.5 1.8 3.1 20.0

Off-state Force [N] 0.2 0.06 0.26 -

Cont. Exertable Force [N] 8.0 0.9 1.8 2.3-3.0

Max. Exertable Force [N] 12.0 3.3 7.9 7.7-9.0

Max. Joint Torques [Nm] 1.5 - - 0.37-0.96

Stiffness [N/m] 18000 2310 2350 6000
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clutches can not produce the forces required in very large force applications such as drilling

in orthopedic interventions.

In order to extend the clutch to 3-DoF, 2 more clutches are required. Based on our cal-

culation, by reducing the weight of the next generation of the MRF-based haptic device,

reconfiguring the location of the clutches in the device (see Appendix A), and using a

lightweight driving motor, a 3-DoF device can be made which has the dimensions of

200 × 200 × 100 mm and weight of 4 kg, which shows great torque-to-size and weight

ratios. Nevertheless, the developed device, as constructed, demonstrates the great potential

of MRF-based actuation for use in haptic interfaces.

5.5 Experimental Setups

Fig. 5.6 shows the developed 2-DoF prototype haptic device. In this section, the exper-

imental setups used for validating the performance of the developed MRF-based hapticTwo-DOF Haptic System 

Antagonistic 
Clutches 

Haptic 
Handle 

Driving 
Motor 

Encoders 

Transmission 
Cables 

Figure 5.6: The two-DoF haptic interface.
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interface are introduced. The haptic interface operates as follows; each joint of the haptic

handle is connected through cables to an antagonistic pair of clutches. A switching algo-

rithm activates the desired clutches based on the direction of the feedback force. Four PID

controllers (implemented in software) are used to control the output torque of the clutches

at 1KHz. As mentioned in Section 5.3.5, the ANN model is employed to provide the feed-

back signal of the PID controllers, based on the readings of the embedded Hall sensors.

The coils of clutches are connected to individual current drivers (Maxon EPOS 50/5 con-

troller operating in current mode), which controls the current of the coil at 1KHz. The

PID controller provides the set-point for the current drivers. The joints angles of the haptic

handle are measured using two optical encoders (with 1024 counts per revolution). A data

acquisition card (Sensoray 626) is employed to provide the current drivers with the refer-

ence current (from PID controller), as well as, to read the output of the Hall sensors and

encoders. The driving motor (Maxon EC-60) is also controlled using a Maxon EPOS 50/5

controller, operating in constant torque mode. It what follows the configurations used to

evaluate the performance of the haptic device are reviewed.

5.5.1 Configuration A : Evaluation of Modeling and Control Methods

The evaluation of the modeling and control methods for a single clutch was given in Chap-

ter 4. In this chapter, a few tests are performed to study the performance of these tech-

niques in an antagonistic configuration. The setup is equipped with an ATI Nano17 sensor

(Fig. 5.6). In order to evaluate the modeling and control method, a pair of clutches was

connected to the sensor to read the output torque (Configuration A ). Note that the sen-

sor reading was not used as a feedback signal and in the normal operation of the haptic

interface, this sensor is not needed (see Chapter 4).
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5.5.2 Configuration B : Virtual Wall Experiments

In the next set of experiments, to evaluate the stability of the system, a virtual wall ex-

periment was implemented. To this end, a virtual wall consisting of a linear spring with

stiffness K
W

and a damping B
W

, was implemented on a computer (different from the one

used for controlling the haptic interface). The wall is in the form of a plane at x = 0 in the

Cartesian space. The two computers communicate through a UDP connection (Configura-

tion B ). The location of the haptic handle end effector is sent to the slave computer. The

virtual wall applies force when the end effector passes the virtual wall (i.e., x < 0). The

reflected force information is sent to the master side and the haptic handle applies force to

the operators hand. To compare the performance of the prototype device with a Geomatic

PHANTOM Omni and a Quanser Haptic Wand, these devices were used in place of the

MRF-based interface in the same configuration.

5.5.3 Configuration C : Needle Insertion Experiments

The performance of the haptic interface is also evaluated using a needle insertion and steer-

ing application from medical robotics. The large variations in forces experienced when a

needle punctures into tissue provides us with the proper challenge for testing the designed

system. Fig. 5.7 presents the block diagram of the master-slave haptic teleoperation system

used for medical needle insertion (Configuration C ).

In our experimental setup, a state-of-the-art robotic system designed in our group at CSTAR

for percutaneous needle insertion [30, 31] was used as the slave robot. This 5-DoF manip-

ulator can perform orientation, insertion, and rotation of the needle and linear motion of

the stylet to drop radioactive seeds in the prostate during the brachytherapy procedure. To

test the haptic device, only the 1-DoF-insertion force was fedback to the user. The force

sensor (ATI Nano43 6-DoF F/T Sensor) installed at the base of the needle holder combined
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Future Works: Integration of the Setups
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Figure 5.7: Configuration C : Block diagram of the master-slave haptic teleoperation.

with the force estimation technique developed in [32] was used to provide force reflection.

PID controllers have been implemented to control the position of the needle at 1KHz. This

system has a remote center of motion at the point of needle insertion into tissue to orient

the needle about the point of insertion before it is inserted. The master and slave sides

communicate with each other through internet using UDP protocol. Figs. 5.8(a) and (b)

show the needle insertion robot and the needle insertion mechanism in Configuration C.

5.5.4 Configuration D : Tissue Palpation Experiments

The performance of the haptic interface is also evaluated using a tissue palpation applica-

tion (Fig. 5.8(c)). The large forces experienced during palpation (e.g., for tumor localiza-

tion), will provide us with the proper challenge for evaluating the designed system. This

configuration is basically the same as Configuration C ; however, the needle is replaced

with a palpator tool, which was made by rapid prototyping.
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(a) (b)

Figure 1.7: Micro manipulator: (a) 5-DOF double-parallelogram robotic structure [15], (b) motor-
ized tracking system for needle guidance in an agar phantom under 3D ultrasound ( c© Copyright
2007, IEEE).

light-weight linkages, and the system includes a mechanically rotated side-fire transducer
to create 3D ultrasound images. The 3D Slicer software [16] is subsequently employed as
the user interface to visualize and define target points in the acquired images. The distal
assembly of the micro robot holds an off-the-shelf 6-DOF hollow force sensor such that the
plunger passes through the center bore of a force sensor and the needle is attached to its
tool flange. The use of force sensor facilitates implementation of computer-assisted needle
insertion/steering algorithms which is the subject of this thesis. This 5-DOF double paral-
lelogram structure imposes a kinematic constraint on the mechanism such that all five joint
axes intersect at a common point to maintain a Remote Center of Motion (RCM). Experi-
mental evaluations of the proposed methodologies in this thesis were carried out using this
micro manipulator which is described in more details in Appendix A.

According to the performance analysis, the macro robot operated with an average displace-
ment accuracy of 0.58mm and a roll, pitch and yaw angular accuracies of 0.26o, 0.26o and
0.38o, respectively [14]. In addition, as reported in [15], the average RMS targeting error
of the micro assembly was found to be 1.45mm at the average insertion depth of 75.78mm
in an agar phantom while 85.7% of the insertions were within less than 2mm error.

In a more recent robotic system [17] demonstrated in Fig. 1.8, a pyramid-shape MR-

Needle

ATI

Sensor

Phantom

Palpator

Phantom
ATI

Sensor

(a) (b) (c)

Figure 5.8: (a) The needle insertion robot [30, 31]. (b) Configuration C : Needle insertion

setup. (c) Configuration D : Tissue Palpation Setup.

5.5.5 Configurations C∗ and D∗: Force Feedback Transparency

To evaluate the accuracy of the device in providing accurate force feedback, Configurations

C∗ and D∗ were considered. These are similar to Configurations C and D. However, a

customized third link was constructed for the handle, which allowed the end effector to be

attached to an ATI Nano43 sensor. This force sensor was mounted on a linear stage, as

shown in Fig. 5.9. The linear stage was used to move the handle. The sensor measures the

feedback force and provides a means for evaluating the accuracy of force feedback.

Haptic

Handle

Joint 2

Joint 1

Linear Stage

Force

Sensor

Figure 5.9: Configurations C∗ and D∗: Use of a linear stage and a sensor for assesing

accuracy.
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5.5.6 Configurations: Summary

A summary of the configurations used in the experiments of this chapter is given in Ta-

ble 5.4. Note that, for the purpose of comparison, the PHANTOM Omni or Quanser Haptic

Wand can be replaced with the MRF device in any of these configuration.

Table 5.4: Summary of Configurations used in the Experiments

Configuration Structure Validation Goal

Conf. A Antagonistic Clutches + ATI Nano 17 Antagonistic Control

Conf. B MRF Device + Virtual Wall Stability

Conf. C MRF Device + Needle Insertion Setup Stability

Conf. C∗ Conf. C + Linear Stage + ATI Nano 43 Transparency

Conf. D MRF Device + Palpation Setup Stability

Conf. D∗ Conf. D + Linear Stage+ ATI Nano 43 Transparency

5.6 Results: Validation of Antagonistic Control
The performance of the modeling and control method for actuating a single clutch was

evaluated in Chapter 4. Furthermore, to evaluate the performance of these techniques when

used in the antagonistic mode, a few additional tests were performed and the results are

provided in this section. In the experiments, two PID controllers were used to control

the output torque of a pair of clutches working in antagonistic configuration. The Hall

sensor measurements, in addition to the ANN-based torque estimator, were used as the

feedback signal for each PID controller. Configuration A was used in these tests. Fig. 5.10

shows the results of these experiments. Note that as the reference signal crosses 0 Nm, the

responsibility of torque generation is switched between the two clutches (i.e., one clutch is

active at a time). As can be seen, the controller has a good performance in tracking these

bidirectional desired torque signals. This test demonstrates the validity of the proposed

modeling and control scheme in the antagonistic configuration.
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Figure 5.10: Results for validation of the antagonistic control (Configuration A ) by apply-

ing bidirectional multi-sinusoidal (left) and sinusoidal (right) reference signals .

5.7 Results: Evaluation of Force Feedback Stability
In this section, the stability of the developed MRF-based haptic interface is compared with

that of a PHANTOM Omni device and a Quanser Haptic Wand through several tests. To

this end, first, the virtual wall benchmark is implemented, as described in Configuration B,

and all devices are tested in different scenarios. Next, phantom and in vitro samples are

used in Configurations C and D to compare the developed system’s stability in real-world

applications.

5.7.1 Virtual Wall Experiments

As mentioned, a virtual wall was implemented in Configuration B. Two sets of experiments

were conducted; (1) For different values of virtual damping B
W

, the maximum achievable

virtual stiffness K
W

by the MRF-based device, the PHANTOM Omni, and the Quanser

Haptic Wand was obtained and compared, i.e., by studying the Z-Width, as described in
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Chapter 2. (2) Robustness of the stability of these devices to the variation of sampling time

were evaluated and compared.

Study of Z-Width

In these experiments, Configuration B was used to study the Z-width of the system. To

this end, for different values of virtual damping the maximum achievable virtual stiffness,

for a stable operation of MRF-based haptic device, PHANTOM Omni, and Haptic Wand,

was obtained. All the experiments in this section were performed at 1KHz. Fig. 5.11(a)

shows the results. As can be seen, the MRF-based haptic interface exhibits the largest Z-

width in comparison with the other two haptic devices. These results once more support

the conclusion drawn in Chapter 2 and show the significant contribution of these type of

actuators in improving the stability of a teleoperation system.

Fig. 5.12 presents the results of some of these experiments. In these tests, a virtual damping
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Figure 5.11: Maximum virtual stiffness that the MRF-based device, PHANTOM Omni,

and Haptic Wand can render while remaining stable for (a) variable virtual damping, and

(b) variable sampling time (Configuration B ).
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of B
W

= 6 N.s
m

was considered. Note that the virtual slave comes into contact for positions

less than or equal zero. Figures 5.12(a-c) present the stable interaction of the Omni, Haptic

Wand, and MRF-based devices with a wall with stiffness of K
W

=500, 2000, and 10000 N
m

,

respectively. However, Figures 5.12(d-f) shows the result of haptic rendering of a virtual

wall with stiffness just above the achievable stiffness. As seen, the MRF-based device

remains stable for a very large range of virtual stiffness, which shows its high Z-width.

Effect of Sampling Time on Stability

Next, the robustness of the system to changes in the sampling time, Ts, of the virtual wall

is examined and compared with that for the Omni and the Haptic Wand. For this purpose,

a constant virtual damping (B
W

= 4 N.s
m

) was considered. The sampling time of the virtual

wall was varied and once more the maximum achievable virtual stiffness was obtained.

Note that the haptic interface still provides feedback at 1 KHz. Fig. 5.11(b) shows the

results. Once more, these experiments proved that the MRF-based haptic device has larger

stability margin and is more robust to the delay caused by the sampling time variation.

5.7.2 Phantom and In Vitro Needle Insertion and Palpation

In this section, phantom and in vitro samples are used in needle insertion and tissue palpa-

tion experiments to evaluate the stability of the system in real-world applications.

Needle Insertion

Configuration C was used in this section. A phantom made of agar with a concentration

of 10% was used in these experiments. The user guided the needle inside the phantom us-

ing the haptic handle. Fig. 5.13(a-c) presents the result of such interaction using the three

considered haptic interfaces. During operation, the PHANTOM Omni became unstable

and exhibited strong oscillations as can be seen in the plot. The Haptic Wand performed
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Figure 5.12: Results of interaction with the virtual wall (Configuration B ) at 1 KHz with

damping B
W

= 4 Ns
m and different stiffness for PHANTOM Omni, Haptic Wand, and the

prototype system. (a-c) Stable interaction and (d-f) unstable interaction.

relatively better, however the ripples in the created force are highly undesirable for med-

ical applications. As seen, the MRF-based haptic interface provided the most stable and

desirable haptic feedback to the user. The user was able to make a very smooth insertion

and retraction of the needle. In another set of experiments, the same test was performed on

an in vitro kidney sample (beef). This organ consists one of the stiffest tissues in the body

due to its thick renal cortex. Fig. 5.13(d-f) show the results. Once more both the Omni and

the Haptic Wand exhibit strong ripples and oscillations. On the other hand, the MRF-based

haptic interface provided very stable interaction.
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PHANTOM Omni Haptic Wand MRF-Based Interface
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Figure 5.13: Results of needle insertion and retraction (Configuration C ) on (a-c) an agar

sample (10% concentration); and (d-f) an in vitro beef kidney.

Tissue Palpation

In order to further study the performance of the developed haptic interface in medical ap-

plications, Configuration D was used and several experiments on tissue palpation were

performed. This section shows the results of the palpation of a phantom made out of agar

(10%) and of an in vitro kidney (beef). The user tried to make several contacts with the

samples using the haptic device. The results are shown in Fig. 5.14. Once more, the sig-

nificant improvement in stability of teleoperation through the use of MRF-based system is

visible. The other devices become unstable as the contact is made, which is exhibited as

uncontrolled motions of the handle. In case of MRF-based system, the interaction remains

very stable. Note that the effectiveness of the MRF-based haptic interface in distinguishing
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Figure 5.14: Results of tissue palpation (Configuration D ) on (a-c) an agar sample (10%

concentration) and (d-f) an in vitro beef kidney.

between high stiffness tissues (tumor) and lower ones is showed in next section.

5.8 Results: Evaluation of Force Feedback Transparency
The stability of the system was studied in the previous section and was compared with that

of two other off-the-shelf haptic interfaces. In this section, the accuracy of force feedback

provided by the MRF-based haptic interface is analyzed by taking advantage of Configura-

tions C∗ and D∗. These tests were designed for (1) validating the accuracy and transparency

of the feedback and (2) studying the ability of the haptic device to provide a differentiable

feel to the user of different tissues with diverse stiffnesses.

REMARK 7. In this section, the term ”slave force/stiffness” is used to show the force/stiffness

measured by the force sensor mounted at the based of the needle or palpator. In other words,
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this is the interaction force or the sensed stiffness during needle insertion or palpation, re-

spectively. The term ”desired torques” refers to the torques that are required to create the

slave force or the sensed stiffness, based on the dynamics of the system. The term ”esti-

mated torque” or ”estimated force/stiffness” corresponds to the estimated output torque of

the clutch and the output forces of the haptic handle which are obtained by the ANN model,

discussed in Chapter 4. The term ”feedback force/stiffness” refers to the force/stiffness felt

by the force sensor attached to the haptic handle (i.e., the actual force as opposed to the

estimated one).

5.8.1 Needle Insertion

To evaluate the performance of the haptic interface in providing accurate force feedback,

first the needle insertion application was considered, and a few experiments were per-

formed. The results are given in this section. These experiments were carried out on a

variety of phantom and in vitro samples using Configuration C∗, as shown in Fig. 5.15.

Motion 

Force 

Gelatin 

Beef Liver 

Swine Lung 

Agar 

Swine Heart 

Swine Stomach 

Chicken Breast 

Beef Kidney 

Beef Heart 

Figure 5.15: Configuration C∗, used for validating haptic feedback transparency using a

large variety of samples.
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The torque control is performed at the clutch level, and consequently the joint torque and

end effector force are controlled. To clearly show this, first an experiment on an agar

sample with a concentration of 3% was performed. As mentioned, in these experiments,

the linear stage was used to command the needle insertion robot and guide the needle inside

the sample. After the needle was inserted in the phantom to a depth of 5cm, the needle was

stopped. The needle was then retracted from the phantom. Fig. 5.16(a) presents the desired

torque and the estimated output torque of the clutches during this operation. Note that

clutches 1 and 2 were antagonistically connected to joint 1 of the handle, and clutches 3

and 4 provided torque to joint 2. The direction of the generated torques in all the clutches

was the same. But due to their antagonistic connection, the paired actuators created torques

in opposite directions.

Fig. 5.16(b) presents the desired joint torque and the created torques at each joint by a
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Figure 5.16: (a) Desired and estimated torques in the clutches during insertion and retrac-

tion of a needle inside a homogeneous phantom. (b) Top row: desired and approximated

torques of joints. Bottom row: the error between the two variables.
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pair of clutches. These torques provide force feedback at the end effector of the handle,

which is measured by the force sensor. The results are shown in Fig. 5.17(a). The mea-

sured force from the slave side, the feedback force measured by the force sensor, and the

estimated output force approximated by the ANN model is shown in this figure. As can

be seen, the haptic interface can provide a fairly accurate force feedback on the master

side. The slow response of the torque feedback during sudden changes is mainly due to the

tension propagation in the cables used for transmitting the torque from the clutches to the

joint. Nevertheless, these results show the potential of the MRF-based haptic interface in

providing accurate force feedback.

The same experiment was performed for a large variety of phantom samples. The results

are shown in Fig. 5.17. Three different concentrations of agar were used in the first three

samples (Fig. 5.17 (a), (b), and (c) which have 3%, 6%, and 10% concentration rate respec-

tively). As can be seen, the device provides accurate feedback to the user, which enables

him/her to differentiate between the stiffnesses of the tissues. A gelatin sample (4%; less

stiff than the agar samples used previously) was also used for comparison (Fig. 5.17(d)).

Next two combinations of gelatin and agar were used to simulate puncturing through dif-

ferent layers of tissue. The first one was a gelatin sample, which contained two spherical

tumors made out of agar (6%). The second sample consisted of layers of gelatin (4%) and

agar (3% and 6%). The needle was inserted into the gelatin and was guided through these

layers. Figs. 5.17(e,f) show the results. The ripples in the fedback force are caused during

puncturing through these layers and as can be seen, the haptic device was able to recreate

all these small deviations. Note that, the error between the ATI sensor reading (actual force

feedback) and the needle (slave) force became large when the direction of the motion was

changed. This is due to the delay that the cable tensions create in the system and is one of

the main drawbacks of the first prototype, and will be addressed in the second generation

of the device.
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Figure 5.17: Desired, estimated, and actual force feedback at the end effector during inser-

tion and retraction of a needle (Configuration C∗) inside phantoms.

Next, in vitro animal samples were used to test the accuracy of the device during needle

insertion into animal tissue. For this purpose, several animal organs were used. Fig. 5.18

shows the results. Every tissue exhibits a different pattern of forces based on its stiffness,
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stickiness, and layers. In all cases, the MRF haptic device provided fairly accurate feed-

back, which enabled the differentiation between tissue properties.
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Figure 5.18: Desired, estimated, and actual force feedback at the end effector during inser-

tion and retraction of a needle (Configuration C∗) inside in vitro samples.
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5.8.2 Tissue Palpation

By taking advantage of Configuration D∗ for tissue palpation, further experiments were per-

formed to assess the accuracy and capabilities of the device. In the results of this section,

to evaluate the transparency of the system, the stiffness (impedance or ratio of force to dis-

placement) of the sample was compared to the reflected stiffness of the haptic handle. First

palpation of phantom samples was performed. Three phantoms with different stiffnesses

(i.e., gelatin sample (4%), Agar samples (6% and 10%)) were used. Figs. 5.19(a-c) show

the results. It is evident that the haptic interface was capable of producing the different

stiffnesses felt of the samples.
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Figure 5.19: Desired, estimated, and actual stiffness at the end effector during palpation

(Configuration D∗) of phantoms samples.
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Tumor localization is one of the main applications of palpation in medical interventions.

For open procedures, the clinician can palpate using their hands but for robotics-assisted

minimally invasive procedures, a haptic interface is needed [33]. To evaluate the perfor-

mance of the haptic device in providing accurate and reliable force feedback for tumor

localization during a minimally invasive intervention, a silicon model that contained two

embedded silicon tumors (stiffer than the surrounding material) were used. These tumor-

like samples were located at different depths - at 1cm and 2cm. Three separate contacts

were made with the sample, (i) several palpations of the surrounding silicon (no tumor)

between 0s-12s; (ii) multiple contacts of the tissue which included the deep tumor 20s-30s;

and (iii) final palpation of the tumor located at the depth of 1cm in the period of 35s-50s.

Fig 5.19 shows the results of the palpation. As can be seen, the MRF-based haptic device

is capable of recreating the stiffness in all three cases, which enables the localization of the

two tumors.

The performance of the haptic device in simulating stiffness of in vitro animal organs was

also studied. The results of the palpation experiments on several tissues are shown in

Fig. 5.20. The outcomes in this section show the great potential of MRF-based actuators

in haptic applications that require stable, high fidelity, and accurate force display. The

cable-driven design of the system is one of its drawbacks due to the delay resulting from

the transmission of torque to the user’s hand. This issue will be addressed in the next

generation of the system.

5.9 Concluding Remarks
The design and evaluation of a prototype 2-DoF haptic interface based on MRF clutches

were reported in this chapter. The device was integrated and evaluated in a master-slave

system for use in medical interventions consisting of needle insertion and steering, as well

as, soft-tissue palpation. The stability and transparency of the system were rigorously
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Figure 5.20: Desired, estimated, and actual stiffness at the end effector during palpation

(Configuration D∗) of in vitro organs.

tested using a wide range of phantom and in vitro samples. In addition, the stability of the

MRF-based haptic device was compared with that of two well-known off-the-shelf haptic

interfaces. While further subject-based investigations are required to study the effect of the
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device in specific medical applications, the promising results show the great potential of the

MRF-based device for use in applications that require accurate and reliable performance.

In the next chapter, we will summarize the contributions of this work and discuss possible

future work to be conducted in this project.



www.manaraa.com

BIBLIOGRAPHY 138

Bibliography
[1] T. Coles, D. Meglan, and N. John, “The role of haptics in medical training simulators:

A survey of the state of the art,” IEEE Transactions on Haptics, vol. 4, pp. 51–66, Jan
2011.

[2] A. Okamura, C. Basdogan, S. Baillie, and W. Harwin, “Haptics in medicine and clin-
ical skill acquisition [special section intro.],” Haptics, IEEE Transactions on, vol. 4,
pp. 153–154, May 2011.

[3] R. Robison, C. Liu, and M. Apuzzo, “Man, mind, and machine: The past and future
of virtual reality simulation in neurologic surgery,” World Neurosurgery, vol. 76(5),
pp. 1750–78, 2011.

[4] A. Hamed, S. Tang, and H. Ran, “Advances in haptics, tactile sensing, and manipu-
lation for robot-assisted minimally invasive surgery, noninvasive surgery, and diagno-
sis,” Journal of Robotics, vol. 12, pp. 1–14, 2012.

[5] K. Ohnishi, “Real world haptics and telehaptics for medical applications,” in Indus-
trial Electronics (ISIE), 2010 IEEE International Symposium on, pp. 11–14, July
2010.

[6] K. Kuchenbecker and G. Niemeyer, “Induced master motion in force-reflecting tele-
operation,” Journal of Dynamic Systems, Measurement, and Control, vol. 128, no. 4,
pp. 800–810, 2006.

[7] R. Lozano, N. Chopra, and M. Spong, “Passivation of Force Reflecting Bilateral Tele-
operation with Time Varying Delay,” Journal of Mechatronics, vol. 12, pp. 215–223,
2002.

[8] I. Polushin, X. Liu, and C. Lung, “Stability of bilateral teleoperators with generalized
projection-based force reflection algorithms,” Automatica, vol. 48-6, pp. 1005–1016,
2012.

[9] A. Shafer and M. Kermani, “Design and validation of a MR clutch for practical con-
trol applications in human-friendly manipulation,” in International Conference on
Robotics and Automation, 2011.

[10] D. Senkal and H. Gurocak, “Haptic joystick with hybrid actuator using air muscles
and spherical MR-brake,” Mechatronics, vol. 21-6, pp. 951–60, 2011.

[11] A. Bicchi, M. Raugi, R. Rizzo, and N. Sgambelluri, “Analysis and design of an elec-
tromagnetic system for the characterization of Magneto-Rheological fluids for haptic
interfaces,” IEEE Transactions on Magnetics, vol. 41, pp. 1876 – 1879, may 2005.



www.manaraa.com

BIBLIOGRAPHY 139

[12] J. An and D. Kwon, “In haptics, the influence of the controllable physical damping
on stability and performance,” in IEEE/RSJ International Conference on Intelligent
Robots and Systems, 2004.

[13] J. Melli-Huber, B. Weinberg, A. Fisch, J. Nikitczuk, C. Mavroidis, and C. Wampler,
“Electro-Rheological fluidic actuators for haptic vehicular instrument controls,” in
Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems,
2003.

[14] W. Li, B. Liu, P. Kosasih, and X. Zhang, “A 2-DOF MR actuator joystick for virtual
reality applications,” Sensors and Actuators, vol. 137, pp. 308–320, 2007.

[15] J. Furusho, M. Sakaguchi, N. Takesue, and K. Koyanagi, “Development of ER brake
and its application to passive force display,” Journal of Intelligent Material Systems
and Structures, vol. 13, pp. 425–429, 2002.

[16] M. Reed and W. Book, “Modeling and control of an improved dissipative passive
haptic display,” in IEEE International Conference on Robotics and Automation, vol. 1,
pp. 311 – 318, Apr 2004.

[17] Y. Yamaguchi, S. Furusho, S. Kimura, and K. Koyanagi, “Development of high-
perforemance MR actuator and its application to 2D force display,” International
Journal of Modern Physics B, vol. 19, pp. 1485–1491, 2005.

[18] M. Bouzit, G. Burdea, G. Popescu, and R. Boian, “Phantom haptic interface: a device
for probing virtual objects,” in International Mechanical Engineering Congress and
Exposition, 1994.

[19] D. Cassar and M. Saliba, “A force feedback glove based on Magneto-Rheological
fluid: Preliminary design issues,” in IEEE Mediterranean Electrotechnical Confer-
ence, pp. 618–623, 26-28 2010.

[20] S. Winter and M. Bouzit, “Use of Magneto-Rheological fluid in a force feed-
back glove,” IEEE Transactions on Neural Systems and Rehabilitation Engineering,
vol. 15, pp. 2 –8, Mar 2007.

[21] Y. Nam, M. Park, and R. Yamane, “Smart Glove: Hand master using Magneto-
Rheological fluid actuators,” in Proceedings of SPIE, vol. 6794, pp. 679434–679434–
6, 2007.

[22] J. Blake and H. Gurocak, “Haptic glove with MR brakes for virtual reality,”
IEEE/ASME Transactions on Mechatronics, vol. 14, pp. 606 –615, oct. 2009.

[23] A. Shafer and M. Kermani, “On the feasibility and suitability of MR fluid clutches in
human-friendly manipulators,” IEEE/ASME Transactions on Mechatronics, vol. 16-6,
pp. 1073 – 82, Dec 2010.



www.manaraa.com

BIBLIOGRAPHY 140

[24] P. Yadmellat, A. Shafer, and M. Kermani, “Design and development of a safe robot
manipulator using a new actuation concept,” in International Conference on Robotics
and Automation, 2013.

[25] A. Shafer and M. Kermani, MR Clutch with Sensors Measuring Electromagnetic Field
Strength. US Patent 20130047772, Feb 2013.

[26] W. Li, P. Yadmellat, and M. Kermani, “Linearized torque actuation using FPGA-
controlled Magneto-Rheological actuators,” IEEE/ASME Transactions on Mechatron-
ics, vol. PP, pp. 1–9, May 2014.

[27] Geomatic Technologies Inc., Woburn MA, Specifications for the PHANTOM Desktop
and PHANTOM Omni haptic devices, 2009.

[28] Quanser, Markham ON, 5-DOF Haptic Wand -Product Information Sheet S25, C ed.,
2008.

[29] V. Hayward and O. Astley, “Performance measures for haptic interfaces,” in Robotics
Research (G. Giralt and G. Hirzinger, eds.), pp. 195–206, Springer London, 1996.

[30] H. Bassan, Design, construction and control of a micro manipulator for prostate
brachytherapy. PhD thesis, University of Western Ontario, 2007.

[31] H. Bassan, R. Patel, and M. Moallem, “A novel manipulator for percutaneous needle
insertion: Design and experimentation,” IEEE/ASME Trans. Mechatron., vol. 14(6),
pp. 746–761, 2009.

[32] A. Asadian, Robotics-Assisted Needle Steering for Percutaneous Interventions: Mod-
eling and Experiments. PhD thesis, University of Western Ontario, 2013.

[33] A. Talasaz, R. Patel, and M. Naish, “Haptics-enabled teleoperation for robot-assisted
tumor localization,” in IEEE International Conference on Robotics and Automation,
pp. 5340–5345, May 2010.



www.manaraa.com

141

Chapter 6

Concluding Remarks and Future Work

The design, development, construction, and evaluation of a two-DoF haptic interface based

on the use of MRF-based actuators for medical application were reported in this work. This

chapter provides concluding remarks that address the contributions, discuss the manufac-

turing expenses and shortcomings of the system, and outline the future steps of the work.

6.1 Summary of Research and Achievements

MRF–based actuators exhibit promising characteristics for applications in haptic devices:

low output inertia, low mass-torque ratio, superior performance and bandwidth, precise

controllability of output torque, and intrinsic passivity of MRF-based actuators. Theoret-

ical studies of the properties of MRF-based actuators through the use of the small-gain

theorem and virtual wall benchmark demonstrated the potential of such actuators for use

in haptic devices with improved transparency and stability. The experimental results of

the virtual wall test described in Chapter 2 on a large-scale prototype of an MRF-based

clutch support these claims and demonstrate the desirable performance of such actuators

when used in a haptic device. While the large-scale MRF-based clutch was not suitable for

use in a practical haptic interface, the results provided a strong motivation for developing
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small-scale MRF-based actuators as a lightweight and compact actuating system. It was

discussed that the conventional designs for MRF-based actuators will lose their advantage

when their size is reduced. Hence, a new design for small-scale MRF-based actuators was

proposed, called armature-based design. This new model takes advantage of a strong and

uniform magnetic field and a large area of contact, which contribute to its torque capacity.

Our preliminary analytical studies on the proposed design support this claim in Chapter 3.

It was shown that this novel design exhibits superior mechanical characteristics in com-

parison with both conventional small-scale electrical motors and conventional MRF-based

clutches. The development of the MRF-based clutch was described in Chapter 4. It was

experimentally demonstrated that the proposed system shows a significant improvement

over the state of the art, especially in terms of torque-to-size ratio. A modeling and con-

trol scheme based on artificial neural networks and embedded Hall sensors was proposed

and it was shown through experiments that it presents a very accurate and efficient means

of providing transparent and high fidelity torque delivery which is essential for haptic de-

vices in medical applications. In addition, the control scheme does not require any external

force/torque sensors, which contributes to lower cost and greater simplicity for the system.

The design and development of a prototype 2-DoF haptic interface based on the armature-

based clutch were reported in Chapter 5. This system takes advantage of a distributed and

antagonistic configuration. The device was integrated and evaluated in a master-slave sys-

tem that can be used for medical interventions that involving needle insertion and steering,

and soft-tissue palpation. The stability and transparency of the system was rigorously ex-

amined using a wide range of phantom and in vitro samples. In addition, its performance

was compared with that of the Geomagic PHANTOM Omni and the Quanser Haptic Wand.

The promising results demonstrated the great potential of this approach for use in medical

applications that require accurate and reliable force feedback.
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6.2 Contributions
This section lists the contributions of the thesis.

– A theoretical and experimental study of the effect of MRF-based actuators on the

performance (stability and transparency) of haptic interfaces was performed.

– A new design of a small-scale MRF-based clutch, called an armature-based clutch,

was proposed, which exhibits high torque capacity and low inertia and mass. Simula-

tion and analytical study of the design was provided. Figures of merit were derived,

and the suitability of the design for use in haptic interfaces was demonstrated.

– Four prototypes of the proposed design were developed and evaluated through several

experiments. The results supported the findings in the design stage.

– A modeling method for predicting the nonlinear behavior of the MRF-based clutch

based on the measurement of the magnetic field using Hall sensors was proposed and

experimentally validated. A feedback in a torque control scheme using feedback of

the output of the model was developed. This resulted in efficient and simple torque

control without the need for a force/torque sensor.

– Using the developed clutches, a prototype two-DoF haptic interface was constructed

for medical applications. This design takes advantage of a distributed antagonistic

configuration of clutches. The structure provides a robust, efficient, and low inertia

of operation which contributes to higher transparency of the system.

– The effectiveness of MRF-based actuators in improving the stability of a teleop-

eration system and its efficiency in providing accurate and reliable force feedback

was validated through several experiments on teleoperated needle insertion and soft-

tissue palpation setups. Several phantom and in vitro samples were used. The results

demonstrated the great potential of these actuators.
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6.3 Discussion: Manufacturing Expenses

Manufacturing cost of the clutch was one of our main design criteria during the design of

the system. Given the simple mechanical design of the clutch and the robustness of this

design with respect to the fabrication process, we believe that MRF-based clutches can be

mass produced at a relatively low cost. The clutches presented in this thesis were the first

prototypes that were built in-house at Western Engineering’s University Machine Services

and using an EDM wire cut machining technique. As a result, the fabrication cost of each

clutch was about $2000 CAD, of which the labor cost was a major part (about 70% of

the total cost). Another measure that can significantly contribute to lower cost of systems

built using our actuation principle is the use of Hall sensors within the design of the clutch,

as discussed in Chapter 4. Using Hall sensors, we are able to achieve accurate torque

measurements and eliminate the need for external and costly force/torque sensors.

Table 6.1: List of Expenses for Manufacturing of a Single Clutch

Part Method Quantity Total Cost

Armature EDM Wire Cut 1 $1,217.96

Outer Casing Machining 1 $329.19

Casing Caps Machining 2 $167.50

Slip Ring Purchase 1 $166.30

Belt Pulleys Machining 2 $161.26

Capstan Pulleys Purchase 2 $114.71

Bearings Machining 4 $48.64

Magneto-Rheological Fluid Purchase 12.8 ml $12.71

Total $2,082.57
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6.4 Discussion: Shortcomings and Drawbacks

The current design has some shortcomings and drawbacks. In this section, these are ad-

dressed and potential solutions are proposed.

Wire Routing: The current use of a keyhole for routing the coil and Hall sensors wires to

the slip ring caused a few problems. This keyhole is vulnerable to leakage. The design will

be modified in the next generation to address this issue.

Heating: Although the issue of heating did not cause significant problems at this stage,

temperature sensing should be integrated in the next generation of the system. Deviations

in the torque output were evident after long periods of operation which was associated with

heating.

Thickening and Maintenance: As mentioned earlier, the issue of thickening is one of

the main problems in MRF-based systems. Fig. 6.1 shows a case of thickening occurring

during this work. It is likely that this was a result of a lower quality MRF and possibly

a failure in sealing, which allowed drainage of the oil from the clutch. However, new

generation of commercial MRF consists of a stabilizer additive, which prolongs its efficient

life. Nevertheless, in the long term, these systems will require regular maintenance due to

Figure 6.1: The problem of thickening in MRF-based clutch.
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this issue. Overall, in comparison with electrical motors, the need for regular maintenance

could add to the cost of the system. In the opinion of the author, this is one of the main

drawbacks of MRF-based actuators.

Cable-Driven System: The device was designed as a cable-driven system with the goal

of making the haptic handle simple, compact, low inertia, and lightweight. However, the

delay caused by the propagation transmission via the cables reduced the bandwidth of the

system and degraded the force feedback transparency. The next generation of the device

will be made with a belt and pulley configuration. Although this approach will add to the

design complexity and size of the haptic handle, it should provide a low inertia and mass

interface for the user.

6.5 Future Work

This section concludes this chapter by outlining some of the next steps in this study.

– The second generation of the armature-based clutch should include temperature sens-

ing that should also be taken into account in the modeling and control. Also fins

should be placed on the outer casing to help reduce heat build up. The wire routing

should be modified. Two sealable holes should be incorporated on the outer casing

to facilitate the process of filling and maintenance. The mass of the clutch should

be reduced by decreasing the thickness of outer casing through the use of proper

machining techniques.

– The cable transmission should be replaced by a belt and pulley actuation system to

alleviate the problems of delay caused by cables in the current version of the device.

– The second generation of the haptic interface should include 3 DoF to evaluate the

efficiency of MRF-based actuators in general purpose medical applications.
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– A mathematical analysis of the effect of MRF-based actuators on transparency should

be performed. In addition, comparison with other well-known haptic interfaces is

required to further study the improvement in transparency.

– Further investigation regarding stable performance of the haptic device should be

carried out for teleoperation systems with time delays. Also, applications, which

involve larger environment forces, should be considered for verification of the system

performance.

– The system should be tested in in vivo and active environments to study the effect of

natural motions and forces (e.g., breathing, heart beat, body motion) on the stability

and effectiveness of the system.

– A series of subject-based experiments should be conducted to statistically study the

effect of the MRF-based haptic interface in medical tasks, such as tumor localiza-

tion, needle insertion and steering, etc. The performance measures should include,

the success rate, completion time, average exerted force, accuracy in controlling in-

teraction forces, comparison with force control based on the haptic interface and that

based on force measurements, control of tool motion, and overall ease of using the

device, etc. In addition, subject-based experiments are required for further study of

stability. It is shown in the literature that different human behaviors may result in

changes in the stability.

– The applicability of the system should be investigated in other medical applications,

such as catheter steering and guidance of probes/catheters for tissue ablation.

– Further safety analysis should be performed to determine the potential of the system

to meet all safety requirements imposed by regulatory health organizations.
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Appendix A

Technical Drawings of the Parts

In this Appendix, detailed specifications of the parts that have been designed are given.
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Appendix B

Kinematics and Dynamics of the Haptic
Handle

In this Appendix, the forward kinematics, inverse kinematics, Jacobian, and dynamic equa-

tions for the haptic handle are given. The frames assigned to this handle are shown in

Fig. B. For this manipulator, li and mi are the length and mass of the i-th link, respectively

(i = 1 to 3). θi, θ̇i, and θ̈i are the angle, speed, and acceleration of the i-th joint. g is the

gravitational acceleration.

θ
1

θ
2

θ
3

{1}

{0}

{2}

{3}

Figure B.1: Assigned frames to the haptic handle.
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B.1 Kinematics

The Denavit-Hartenberg (DH) parameters of the haptic handle are given in Table B.1.

Table B.1: DH Parameters of Haptic Handle

i 1 2 3

Link Twist, αi−1 0 0 0

Link Length, ai−1 0 l1 = 0.100m l2 = 0.079m

Link Offset, di 0 0 0

Joint Angle, θi θ1 θ2 θ3

The transformation matrices are as follows:

0
1T =



cos(θ1) − sin(θ1) 0 0

sin(θ1) cos(θ1) 0 0

0 0 1 0

0 0 0 1


(B.1)

1
2T =



cos(θ2) − sin(θ2) 0 l1

sin(θ2) cos(θ2) 0 0

0 0 1 0

0 0 0 1


(B.2)

2
3T =



cos(θ3) − sin(θ3) 0 l2

sin(θ3) cos(θ3) 0 0

0 0 1 0

0 0 0 1


(B.3)
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As a result, the planar position of the end effector (i.e., origin of frame {3}) is given by,

0
3P =

 x

y

 =

 l2(cos(θ1) cos(θ2)− sin(θ1) sin(θ2)) + l1 cos(θ1)

l2(sin(θ1) cos(θ2) + cos(θ1) sin(θ2)) + l1 sin(θ1)

 (B.4)

B.2 Inverse Kinematics

The inverse kinematics of the manipulator, based on it’s geometries is given by

θ2 = ± arccos(
x2 + y2 − l12 − l22

2l1l2
) (B.5)

and

θ1 =

 β − ψ : θ2 > 0

β + ψ : θ2 ≤ 0
(B.6)

where,

β = arctan(
y

x
) (B.7)

and

ψ = arccos(
x2 + y2 + l1

2 − l22

2l1
√
x2 + y2

) (B.8)

B.3 Jacobian

The Jacobian of the system with respect to the base frame {0} is given by
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0J =

 −l1 sin(θ1)− l2 sin(θ1 + θ2) −l2 sin(θ1 + θ2)

l1 cos(θ1) + l2 cos(θ1 + θ2) l2 cos(θ1 + θ2)

 (B.9)

B.4 Dynamics

The dynamics of the system are as follows:

τ =M(θ)θ̈ + V (θ, θ̇) +G(θ) (B.10)

where,

M(θ) =

 m2l2
2 + 2l1l2m2 cos(θ2) + (m1 +m2)l1

2 ml2
2 + l1l2m2 cos(θ2)

m2l2
2 + l1l2m2 cos(θ2) m2l2

2

 (B.11)

and

V (θ, θ̇) =

 −m2l1l2 sin(θ2)θ̇2
2 − 2m2l1l2 sin(θ2)θ̇1θ2

m2l1l2 sin(θ2)θ̇2

 (B.12)

and

G(θ) =

 m2l2g cos(θ1 + θ2) + (m1 +m2)l1g cos(θ1)

m2l2g cos(θ1 + θ2)

 (B.13)
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